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A Parallel Algorithm for Tiling Problems

YOSHIYASU TAKEFUIJI ano KUO-CHUN LEE

Abstract—A parallel algorithm for tiling with polyominoes is pre-
sented in this paper. The tiling problem is to pack polyominoes in a
finite checkerboard. The algorithm using / X m X n processing ele-
ments requires O (1) time where [ is the number of different kinds of
polyominoes on an m X n checkerboard. The algorithm can be used
for placement of components or cells in a very large scale integrated
circuit (VLSI) chip, designing and compacting printing circuit boards,
and solving a variety of 2-D or 3-D packing problems.

INTRODUCTION

The problem of tiling with polyominoes was introduced by Go-
lomb in 1953 [1]. The tiling problem is to pack a checkerboard
with polyominoes. Although Klarner [2], Golomb [3], Gardner {4],
Klamkin and Liu [5], Golomb [6], and others have been working
on the problem, few sequential algorithms have been reported. No
parallel algorithm has been given during the last three decades.
Akiyama et al. [7] have proposed the first parallel algorithm based
on the stochastic neural network using noise to escape from the
local minimum. However, the quality of the solution drastically
degrades with the problem size although the experimented problem
size is small. The complexity of solving their 5 X 5 checkerboard
problem is to find a single solution among 3.3 X 10° possible can-
didates.

This paper introduces the new deterministic parallel tiling al-
gorithm. The algorithm packs a checkerboard with polyominoes
within O(1) time. The quality of the solution does not degrade
with the problem size. The algorithm was verified by more than
1000 simulation runs solving a 7 X 7 checkerboard tiling problem
with 10 polyominoes. Without rotation or reflection, the complex-
ity of our problem is to find a single solution among 1.3 x 10"
(= 25% x 36 X 30 x 24 X 21) possible candidates where there
exists one and only one solution in the problem.

The algorithm uses a three dimensional 10 X 7 X 7 neural net-
work array where the output of the ijkth neuron follows:

Vi = Lif Uy > 0 and Uy, = max (Uy,)

i
forx=1,---,7andy=1,---,7
=0  otherwise.

Fig. 1 shows ten polyominoes and their markers. A marker is
used to locate a polyominoe on the checkerboard. A polyominoe
requires a two-dimensional 7 x 7 neural network array so that this
problem can be solved by the three-dimensional 10 X 7 X 7 neural
network array as shown in Fig. 2. One and only one marker neuron
is forced to fire per 7 X 7 neural network array. Besides a 7 X 7
neural network array each polyominoe needs a tiling sideboard to
represent its shape and violation conditions. In other words, the
state of the sideboard indicates occupied tiles of a polyominoe on
a checkerboard where the sideboard is composed of a 7 X 7 binary
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Fig. 1. Ten polyominoes and their markers.

Sideboards

3D Neural Network Array

Fig. 2. Neural representation for the 7 X 7 tiling problem.

array where V/; indicates the state of the ( j, k) coordinate on the
ith sideboard. The motion equation of the ijk neuron is given by:

m n !
= = —A(Z = V,-q,—1>—B<Z qukfl>
dt q q=1

=1r=1

— Cf(i) + Dh <él ;, V,-q,> (2)
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where Uj; is the input of the jkth neuron on the ith neural network
array. In (2) the first term forces one and only one neuron to fire
in the ith polyominoe neural network array. The second term forces
no two markers to be placed in the same position on the checker-
board. The third term is always inhibitory which describes the
overlap violation between polyominoes where the ten violation
functions for ten polyominoes: f(1) through f(10) are given by,
respectively:

1"
f(m) = q;l (Vi + w(m))
q#m

w(l) = (Vijrix + Vijurr + Vijusa + Vijiisn)
w(2) = (Vojerx + Vojeiaer + Vigsrasz + Vijraie2)
W(3) = (Vr;,j.k+|
w(4) = (Vijrix
w(§) = (Vc',.jﬂ,k
w(6) = (Vijeis

+ Vijksz ¥ Vijorura + Vijrase2)
+
+
+
w(7) = (Vgjsrx +
+
+
+

Veivak ¥ Vojoiwsr + Vojriae2)
Viietk-1 + Vojeraer + Vojezi)
Vijerk t Vajese + Vojvan)

Viivik-1 + Vijraw-r + Vojran-a)
w(8) = (Vysix + Vg
w(9) = (Vyjsix + V

w(10) = (Vé.ﬁ 1k

, ,

airih-t T Voiria-z + Vijvia-3)

) ) /

aieth—1 T Vajrtast T Vojsaie)
,

Viikst T Vi)

Another extra sideboard #11 is used to destroy the isolated space
on a checkerboard. Set Vij;_ 1 = Vij+ix = Viju-1 =Vijun
= 1 if the isolated space is found. The condition of the isolated
space is given by:

10 10 10
2 Vo =0, ; Vii-re =1 ; Viirrx =1
g=1 q=1 g=1

10 10

% Vi =1, and qE] Vigar = L.

- -

The third term —Cf (i ) in (2) and —Cf (i ) Vj are alternatively
used to converge to the global minimum. Related values of V,, are
set to one if the marker neuron V, on the ith neural network array
is fired where g and r are depending on the polyominoe’s shape.
For example, set Vi, = Vi, 1« = Vijks2 =
Vijs1k+2 = 1if V3 = 1 for the #1 polyominoe in Fig. 1. The
last term provides hill-climbing which allows the state of the sys-
tem to escape from the local minimum and to converge to the global
minimum. The function z(x) is 1 if x = 0, 0 otherwise.

,
Vijk+

PARALLEL ALGORITHM FOR TILING PROBLEMS

The following procedure describes the proposed algorithm based
on the first-order Euler method.

0) Sett =0and4A =B=C=D=1. .

1) The initial values of Uy (1) for i= 1, - --
-+-,7k=1,---,7are randomized.

2) Evaluate values of V;(¢) based on the conditional binary
function:

L10j = 1,

V(1) = 1if Uy(r) > 0 and Uy ()= max {Up, (1)}
forx=1,---,7andy=1,"--,7
=0

otherwise.

3) Values of V[ (¢) are set to zero.

4) Set appropriate values of ¥/ (¢) to one if the mark neuron is
fired:

= Vi =Vijoor = Vijirz = Vijoige = 1if
Vig =1
Vi = Vijorx = Vijerusr = Vijeiksz = Vajrasnsr = 1if
Vo = 1
Vi = Vijuer = Vijusz = Vijsrkez = Vijaznsa = 1if
Vye =1

;o _ _ _ P
Vig = Vijorw = Vijeox = Vijerasr = Vijsraaz = Lif

V4jk =1
- ’ —_ — ’ _ 14 —_ H
Vi = Vsjeia = Vsjrra-1 = Vijriaer = Vijran = 1if
Vs = 1

— v -y _ _ 1
Viie = Vijorw = Vojraw = Véjesx = Véjran = LIf

Vij =1
= - _ — v 1
Vi = V"/,j+|,k = V?.j+1,k~| = V7.j|2.k—[ = V7.]+2.k—2 = 1if
Vip = 1

_ _ _ _ 1
Vi = Vijorw = Vijeraor = Vijare—2 = Vijuru-s = Lif

Vag = 1
Vi = Vojuin = Vojein-1 = Vojviu1 = Vijausr = Lif
V9jk =1
Viok = Vioj+rk = Viojuk+1 = Viojrixsr = Lif
VIOjk = 1.
5) Set
10 10
Vig =1if 2 Vi =0, Z] Vix=1
a=

1 q=

10 10

2 Viyau=1l X V-, =1 and
qg=1 g=1

10

2 Viger = 1.

q=1

6) Use the motion equation in (2) to compute AUj;(t).
If (¢t mod 10) < w then:

AU(1) = —A(é § V(1) — 1> - B<ql2‘ Valt) — 1)

= Cf(i) Viel#) + Dh<q§1 é V.-qr(t)>

else

AU (1) = —A(é1 é Vir(£) = 1> - B<q§ Valt) — 1>

- Cf(i) + Dh( Zl Z. V,»q,(t)>.
g=1r=
7) Compute U;; (¢ + 1) based on the first-order Euler method:
Up(t + 1) = Uy(1) + AUy (1)

10, j=1e T
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Fig. 3. The relationship between the frequency and the number of iteration
steps to converge to the global minimum.
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Fig. 4. The solution for a 7 X 7 checkerboard tiling problem.

TABLE I
FREQUENCY OF CONVERGENCE TO THE SOLUTION

@ No. of placed polyominoes
<10 10

3 S3% 45%

6 21N il

T o% 100%

8 3% 7%

9 Na Convergence

8) Increment t by 1. If t = T terminate this procedure, or go to
step 2.

More than 1000 simulation runs were performed to observe the
frequency of the system to converge to the global minimum with
varying w as shown in procedure 6. Table I shows the result. When
w = 7 was used, the state of the system always converged to the
global minimum within 5000 iteration steps. The relationship be-
tween the frequency and the number of iteration steps to converge
to the global minimum was observed and the result is shown in
Fig. 3. The average number of iteration steps for the proposed sys-
tem to solve the 7 X 7 checkerboard tiling problem without rotation
and reflection is 930. Fig. 4 shows one and only one solution of
the problem without rotation and refiection.
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Neural Networks in Communication

EDWARD C. POSNER, FELLOW, IEEE

Abstraet—This letter summarizes material from eight papers on
neural networks from the November 1989 special issue of the IEEE
COMMUNICATIONS MAGAZINE.

INTRODUCTION

The ‘‘Guest Editorial’’ reprinted below is from the November
1989 IEEE COMMUNICATIONS MAGAZINE,' a special issue on neural
networks in communication. The function of Guest Editor was as-
sumed by me. The appearance of this and other special issues and
special sections on neural networks in various existing IEEE pub-
lications in the last several years attests to the importance of neural
networks to the interests of the IEEE. As the editorial points out,
communications is a natural field of application for neural net-
works. Although the ecight papers are briefly summarized in the
editorial, the entire issue itself is worth having if you are interested
in neural networks but are not a Communications Society member.
Perhaps the editorial will encourage you to dig deeper into the No-
vember issue.

GUEST EDITORIAL

This timely special issue of the IEEE COMMUNICATIONS
MaGAzINE' is devoted to neural networks in communication. We
all feel we know very well what communication is. One of this
special issue’s goals is to make communications engineers aware
of what neural networks are and how they could be applied to com-
munication systems in the future. We will also see how ideas from
communication, specifically information theory, can help elucidate
what is going on in neural networks.

First, a good temporary working definition to adopt before get-
ting deeply into this special issue is to think of a neural network as
a richly connected set of interacting devices that produces and dis-
tributes outputs based on simple functions of their inputs, such as
mildly distorted sums of products and simple combinations of sums
of products. Even a correlator can be considered a very special
neural network, although the power of neural networks resides in
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their decision-making capabilities. In fact, the individual compo-
nents (i.e., synthetic neurons) are by themselves too simple, spe-
cial, and nongeneral-programmable to be called computers. The
computation a neural network does is often best thought of as re-
siding in the connections and their strengths, rather than in the
functions performed by the individual neurons. For this reason,
representation of data is a quite subtle issue in neural networks,
still under active investigation. Other architectural issues to look
for in the articles are the presence or absence of feedback, the mod-
ifiability of connection (synapse) strengths, and synchronous ver-
sus asynchronous operation (natural neural networks are asyn-
chronous).

Because synthetic and natural neural networks perform, or
promise to perform, very demanding feats of decision, recognition,
and computation based on their network structure; it is not surpris-
ing that ideas from communications help analyze and understand
neural networks. In the opposite direction, we ask, why do we ex-
pect neural networks to be especially useful in the communications
industry? We think there are many good reasons.

1) Specialized forms of neural networks with linear neurons are
already in use in communications, for adaptive antenna arrays and
adaptive feeds, and, in the commercial sector, as adaptive equal-
izers for computer communications modems.

2) Neural networks, both natural and synthetic, seem able to
perform the pattern recognition and optimization tasks so useful in
transmission, switching, memory, and the human/system inter-
face. (Threshold decoding could be listed as another example, but
the codes are not competitive with other error-correcting coding
schemes.)

3) The extensive algorithm analysis in communications, in par-
ticular, error-correcting coding, data compression, switching, and
queuing, preadapt communication theorists to think about neural
network algorithms. v

4) Information theory, which considers probability distributions
on long sequences, is similar in spirit, and some techniques, to
what is needed to understand large synthetic neural associative
memories.

5) The potential for learning can reduce the life-cycle costs of
major implementations by reducing sustaining engineering and
customization costs.

6) The large installed base of communication equipment around
the world makes even small improvements in performance valu-
able, for example, picture quality in high-definition television,
which someday could be enhanced by neural-style decoders.

7) The communications industry has traditionally invented, de-
signed, and manufactured many of its own electrical and electronic
components for more than 100 years, including such things as the
hybrid transformer, the step-by-step switch, the feedback ampli-
fier, the transistor, the CCD camera, and signal-processing chips.

8) The revenue stream produced by the common carriers can
support many of the developments needed to apply neural networks
to communications.

9) Many communications laboratories are already supporting
neural network research and development, living up to their tradi-
tions, such as Bell Labs, Bellcore, Lincoln Lab, JPL, Texas In-
struments, Hughes, NTT in Japan, Philips in Europe, and others
in the civil sector, as well as the U.S. Department of Defense.

Of course, neural networks are also being studied for other ap-
plications, in particular robotics. The applications tend to overlap,
though. For example, a robotic teleservicer for a communications
satellite is part of a communication system. Robotic applications
are not specifically discussed here, although many others are.

This issue has eight articles, which will now be highlighted. The
first article, ‘‘Information Theory, Complexity, and Neural Net-
works,”’ by Yaser Abu-Mostafa of Caltech, describes what a neural
network is from an abstract information complexity staridpoint. The
author explains how neural networks could be used as associative
memories, pattern discriminators, and routing optimizers, and what
the theoretical limitations on the ability of neural networks to per-
form these functions may be. The article also introduces the con-
cept of learning for a synthetic neural network, which, if done off-
line, can be thought of as very high level programming. The po-

tential ability to learn or generalize is what makes synthetic neural
networks so attractive in many classes of applications. For exam-
ple, a human/system interface, with learning, can potentially tailor
itself to the idiosyncrasies of individual users.

The second article, ‘‘Neural-Style Microsystems that Learn,”’
by Joshua Alspector, describes progress at Bellcore with an actual
prototype VLSI chip that can be taught by example. Natural and
sythetic neurons are contrasted so that we can see how far away we
are from the connectivity of vertebrate neural nets, and yet we can
begin to do interesting tasks with networks we can build. (We can
already build some invertebrate-sized synthetic neural networks,
but we don’t use them as well as the creatures do.) If we try to
perform neural network tasks purely in software, we may lose most
of the advantage of the high connectivity of simple elements, and
just wind up with another clever, but not blindingly fast, computer
algorithm. It is specially designed neural hardware that holds the
promise of decisive applications in communications; analog or hy-
brid analog/digital VLSI and optoelectronics seem especially
promising for this.

Along these lines, the third article, ‘*Optoelectronic Implemen-
tations of Neural Networks,”” by Demetri Psaltis of Caltech and
five members of his research group, provides an alternative or sup-
plement to purely electronic neural chips. Optical interconnections
are especially attractive because of their high interconnectivity po-
tential. Natural neural networks are slow in speed compared with
gallium arsenide or even with conventional silicon VLSI, but they
make up for it by very numerous and often seemingly complex
interconnections. Learning is accommodatable with optical neural
networks via dynamic holographic media. Pattern recognition ap-
plications are demonstrated in the article, with actual pictures rec-
ognized shown along with the explanation and block diagrams.

Speaking of pattern recognition, the fourth article, **Handwrit-
ten Digit Recognition: Application of Neural Net Chips and Au-
tomatic Learning,”’ by Y. Le Cun, L. D. Jackel, and seven col-
leagues, all from AT&T Bell Laboratories, demonstrates an
effective application of neural networks, without and with learning,
to handwritten digit recognition, i.e., zip codes. The error and era-
sure rates obtained are as good as, if not better than, other dem-
onstrated handwriting recognition methods. The advantages come
with less system size and cost, due to a special-purpose neura! chip
in the nonlearning approach, or to a fast signal processing chip with
fast alogrithm in the slower learning approach. This foreshadows
the future use of neural networks to facilitate the human/system
interface.

A related article is the fifth, <‘Pattern Classification using Neural
Networks,”’ by Richard P. Lippmann of the M.I.T. Lincoln Lab-
oratory. The author surveys many neural and neural-inspired non-
parametric pattern classifiers. The author compares them as to
training complexity and memory requirements, including the per-
formance of the famous back-propagation learning technique for
multilevel feed-forward neural networks. A very valuable and ex-
tensive bibliography is provided. Classification is a function that
often has to be performed by a communication system, for func-
tions such as quantization and data compression, decoding, on-line
fault isolation, interference rejection, link quality monitoring, sig-
nal detection, and, as in the preceding paper, in the human/system
interface, such as for handwritten or voice input to a communica-
tion system.

The human/system interface comes in article six, ‘‘Integration
of Acoustic and Visual Speech Signals using Neural Networks,”
by B. P. Yuhas and M. H. Goldstein, Jr., of Johns Hopkins, and
T. J. Sejnowski of the Salk Institute and the University of Califor-
nia, San Diego. The authors show the progress that has been made
in one very important classification problem in communications,
that of speech recognition in a noisy environment. Here the *‘in-
tegration’” means using the visual signals from the lips and perhaps
from other facial expressions to augment the decisions from sound
alone. Great improvement is found by incorporating the visual sig-
nals (*‘read my lips’*), using neural networks with both speech and
visual inputs. Linguistic theory was used in designing the layered
feedforward neural network, which was simulated on a RISC com-
puter. Back-propagation learning was used, and great improvement
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was found over sound input alone at signal-to-noise ratios below
15 dB.

The previous applications have used mostly neurons that distort
sums of products. The seventh article, ‘‘Neural Networks for
Switching,”” by Timothy X Brown of the California Institute of
Technology, shows how neural networks with inhibition (same term
used in biology and engineering) can be applied to a central func-
tion of common-carrier communication, that of finding or assigning
a path through a switch. This is an example of an optimization or
assignment problem at which neural networks, natural and syn-
thetic, have been found to be useful. The particular switch studied
here is a rearrangeable switch, but the general nonlayered architec-
ture that makes heavy use of inhibitory connections, as natural
neural networks often do, is more broadly applicable to switching
and routing. Other communications applications of the inhibitory
architecture could be found in communication routing problems,
such as call routing or packet routing in wide-area networks, band-
width allocation in space and ground networks, and frequency as-
signment or reassignment in cellular radio. The article builds on
the earlier work of M. C. Paull and D. Slepian on call rearrange-
ment, 25 or more years ago, but neural networks were not part of
these early algorithms.

The eighth and final article, ‘‘Defense Applications of Neural
Networks,”’ by Jasper Lupo of the Defense Advanced Research
Projects Agency (DARPA), shows how neural networks can help
provide functions such as machine vision, speech recognition, and
data structuring for efficient utilization by humans. These are op-
erations which occur in many places in the national defense in sens-
ing and communication systems. The computational capabilities of
living creatures, of neural network simulators, and of potential spe-
cial-purpose neural hardware are reviewed, with projected tech-
nological capabilities. Potential applications of neural networks to
high data-rate sensors in the national defense are presented with
figures and estimated requirements on interconnects and intercon-
nects /second. These applications motivated the new DARPA pro-
gram in neural networks.

The eight articles, all invited by the Guest Editor, were also all
refereed. I thank the referees, who are listed here in alphabetical
order: Philip Alvelda, Pierre Baldi, Allen Gersho, Rodney M.
Goodman, Fernando Pineda, Jawad Salehi, Bernard H. Soffer, and
Eyal Yair. Thanks are also due to Stephen B. Weinstein, who sug-
gested this special issue, and to Carol M. Lof, publisher of IEEE
COMMUNICATIONS MAGAZINE, who ably handled the marked-up
submissions. The work of the Guest Editor for this issue was sup-~
ported by NASA and Pacific Bell.

Neural Networks for Circuits and Systems

NEVINE EL-LEITHY anp ROBERT W. NEWCOMB,' FELLOW, IEEE

Abstract—This letter summarizes material from 16 papers on neural
networks from the May 1989 special issue of IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS.

The purpose of this letter is to let readers know about the special
issue on neural networks published in the May 1989 IEEE TRANS-
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ACTIONS ON CIRCUITS AND SysTEms.? The issue contains the fol-
lowing papers.

1) M. A. C. Maher, S. P. DeWeerth, M. A. Mahawold, and
C. A. Mead, ‘‘Implementing Neural Architectures Using Analog
VLSI Circuits,”” pp. 643-652. This paper discusses a methodology
for building artificial neural networks in CMOS VLSL

2) D. K. Hartline, *‘Simulation of Restricted Neural Networks
with Reprogrammable Neurons,”” pp. 653-660. Network models
for the SYNETSIM program are presented, these being based upon
electrobiochemical data.

3) G. Mirchandani and W. Cao, ‘‘On Hidden Nodes for Neural
Nets,”” pp. 661-664. A proof is given that the maximum number
of separable regions of the input space is a function of both the
number of hidden nodes and the input space dimension.

4) M. L. Brady, R. Raghaven, and J. Slawny, ‘‘Back Propa-
gation Fails to Separate Where Perceptrons Succeed,’” pp. 665-
674. Counterexamples are presented to show that the limitations of
perceptrons are not overcome by the back propagation algorithm.

5) D. L. Standley and J. L. Wyatt, Jr., “‘Stability Criterion for
Lateral Inhibition and Related Networks that is Robust in the Pres-
ence of Integrated Circuit Parasitics,”” pp. 675-681. A design ap-
proach is presented which guarantees that lateral inhibition net-
works will remain stable in the presence of parasitics.

6) A. R. Stubberud and R. J. Thomas, ‘‘Associative Recall
Using a Contraction Operator,”’ pp. 682-686. An associative
memory transformation is introduced which has rapid convergence,
noise rejection, and some learning.

7) N. I. Dimopoulos, ‘‘A Study of the Asymptotic Behavior
of Neural Networks,”” pp. 687-694. Neural network nonlinear dif-
ferential equations are discussed and topologies, including cere-
bellum type, are established which exhibit asymptotic behavior.

8) A.D. Culhane, M. C. Peckerar, and C. R. K. Marrian, ‘‘A
Neural Net Approach to Discrete Hartley and Fourier Trans-
forms,”” pp. 695-703. An electronic circuit based on a multiply
connected neural net is presented to compute the discrete Hartley
and Fourier transforms.

9) O. K. Ersoy and C.-H. Chen, ‘‘Learning of Fast Trans-
forms and Spectral Domain Neural Computing,’” pp. 704-712. The
interaction between neural networks and fast transforms is pre-
sented with emphasis upon the use of learning algorithms.

10) J.-H. Li, A. N. Michel, and W. Porod, ‘‘Analysis and Syn-
thesis of a Class of Neural Networks: Variable Structure Systems
with Infinite Gain,”> pp. 713-731. The theory of ordinary differ-
ential equations with discontinuities is used to set up analysis and
design procedures for neural networks with infinite gain.

11) D. E. Van den Bout and T. K. Miller, III, ‘“A Digital Ar-
chitecture Employing Stochasticism for the Simulation of Hopfield
Neural Nets,”” pp. 732-738. A digital architecture which uses sto-
chastic logic for simulating the behavior of Hopfield neural net-
works is described.

12) M. K. Habib and H. Akel, ‘‘A Digital Neuron-Type Pro-
cessor and Its VLSI Design,”” pp. 739-746. A set of neuron-type
circuit elements based on logic gate circuits with multi-input multi-
fan output capability and realizable in VLSI is presented.

13) K. A. Boahen, P. O. Pouliquen, A. G. Andreou, and, R.
E. Jenkins, ‘A Heteroassociative Memory Using Current-Mode
MOS Analog VLSI Circuits,’” pp. 747-755. Use is made of analog
current-mode circuits operating in subthreshold conduction to
achieve a scalable architecture for the implementation of neural
networks with low power consumption.

14) B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-
Vizquez, and J. L. Huertas, *‘A Programmable Neural Oscillator
Cell,”” pp. 756-761. Using operational transconductance ampli-
fiers a programmable neural oscillator based upon hysteresis is pre-
sented.

15) M. Verleysen, B. Sirletti, A. Vandemeulebroecke, and P.
G. A. Jespers, ‘‘A High-Storage Capacity Content-Addressable

JEEE Trans. Circuits Syst., vol. 36, no. 5, May 1989.
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