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A Parallel String Search Algorithm

Yoshiyasu Takefuji, Toshimitsu Tanaka, and Kuo Chun Lee

Abstract— A new parallel processing algorithm for selving string
search problems is presented in this paper. The proposed algorithm uses
O(m x n) processors where n is the length of a text and m is the length
of a pattern. It requires two and only two iteration steps to find the
pattern in the text, while the best existing parallel algorithm needs the
computation time O(loglog n).

I. INTRODUCTION

The string search problem is to find all occurrences of a given
m-character pattern in a given n-character text and it is one of
fundamental operations in information system and computer science.
As is well known, one of the best current string search algorithm was
proposed by Boyer-Moore [1]. Their algorithm performs in O(n/m)
on the average case. However, the performance of their algorithm is
poor for short patterns when m is small, and the worst case of their
algorithm is O(n +rm) where r is the number of matches found [2],
[3]. Another well known Knuth, Morris, and Pratt’s algorithm [4] is
also O(n + m) in the worst case.

A few parallel algorithms for solving string search problems have
been proposed in the last decade. In 1984, Galil proposed optimal
parallel algorithms where one algorithm requires O(k) time with
p = n't1/* and the other does O(log n/loglog n) time with
p = n [5]. In 1985, Vishkin proposed the O(n/p) time parallel
algorithm with pn/log n [6]. Berkman, Breslauer, Galil, Schieber,
andViskin presented the O(loglog n) time parallel algorithm in 1989
[7]. String-search VLSI circuits have been investigated by Hirata [8],
Foster [9], and Wade [10]. In this paper, a new parallel algorithm to
find all occurrences of a pattern among the given text is presented.
The algorithm uses simple m x n processing elements called binary
neurons and requires two and only two iteration steps to find a
solution. A super parallel sorting algorithm was reported in [11],
[12] where they use the same McCulloch-Pitts neuron. The output
of the ith McCulloch-Pitts binary neuron is given by

] ) 1 ifT >0
Vi=f(ly)= { (1)

0. otherwise

where V; is the output of the ith neuron and U'; is the input to the
¢th neuron.

In 1985 the first artificial neural network for optimization problems
was introduced by Hopfield and Tank [13]. Although Wilson and
Pawley [14] and Paielli [15] strongly criticized the neural net-
work for optimization problems, a variety of optimization problems
including sorting [11], [12], graph planarization [16], tiling [17],
RNA secondary structure prediction [18], [19], finding a maximum
independent set [19], crossbar switch scheduling [20], time slot
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Fig. 1. Neural network representation for string search problems: M=4
and n = 18.
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Fig. 2. States of neurons. Black box denotes the fired neuron: m = 5,
n = 20. B denotes the final neutron. (a) A state after the first step. (b) A
state after the second step.
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Fig. 3. The simulation result of the text size=26, pattern size= 10.

assignment problems in TDM hierarchical switching systems [21],
channel routing [22], Hip games [23], four-coloring and k-colorability
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Fig. 4. The simulation result of the text size=100, pattern size=4.

[24], spare allocation problems [25], and others [26] have been
successfully solved. In this paper, the neural network representation is
given in Section II, the simulation result in Section III, the hardware
architecture in Section IV, and the conclusion in Section V.

II. NEURAL NETWORK REPRESENTATION

An m(n — m + 1) neural network array is provided for solving a
string search problem where row and column correspond to the loca-
tion of the pattern register and that of the text register, respectively.
U, and V;, represent an input and an output of the izth neuron,
respectively, where the subscript i indicates the ith register which
contains the ASCII value of the ith character in the pattern, V,;.
In the same way, the second subscript z indicates the xth register
which contains the ASCII value of the xth character in the text, Ny..
If more than one pattern exist in the given text, the corresponding ¢xth
neuron will be fired, that is, V;, = 1. For example, Fig. 1 shows the
neural network representation for searching the four-character pattern
“name” in the 18-character text “My name is Neuron.” Fired neurons
locate the string of the searching pattern.

The motion equation of the ¢zth neuron is given by

Uiz
dt

~4-g(Npi = Neo) = B g(Z Vix i - m> @

=1

where the function g(x) is —1 if *+ = 0,1 otherwise. A and B
are coefficients and m is the length of a pattern. In (2), the first
term performs the excitatory forces as long as the ith character in the
pattern is the same as the .rth character in the text. If V),; = Ny, then
V5. will be 1, else the first term will act as the inhibitory force. The

second term will be the excitatory force when diagonally consecutive
m neurons including the izth neuron are all fired. If not, the second
term will discourage the izth neuron to fire.

The first-order Euler method was used for the numerical simulation
of (2) and each simulation run was terminated when the patterns were

found in the given text. Initial values of neurons U foré = 1.---.m
and + = 1,---.n were assigned to the same negative value. The
following procedure describes the proposed parallel algorithm.

1) Sett = 0.

2) The initial values of U;-(0) fori = 1,---,mx = 1,--+.n are
assigned to the same negative values. For example Uiz(0) =
—1fori =1, - ,mandxr = 1,---,n.

3) Evaluate the values of Viz(t) based on the McCulloch—Pitts

binary function. If Ui, (t) > 0 then Vi, (t) = 1, else Viz(¢) = 0
Use the motion equation in (2) to compute Us.(t). In the first
iteration step, the coefficient A is assigned to 2 and B is
assigned to 0. In the second iteration step, A is changed to
0 and B is changed to 2:

4

AU (t)=—A-g(Npi — Nez) - B g(z Viemigi(t) = m).
=1
’ )

based on the first-order Euler method:

5) Compute U (t + 1
(t) + Uip(t) for ¢ = 1.---.m and

va.r(f +1) = Uir
1.---.n.
6) Increment ¢ by 1.
7) If + > 2 then terminate this procedure, else go to step 2.

)
t)
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Fig. 5. The simulation result of the text size=100, pattern size= 8.

III. SIMULATION RESULTS

Fig. 2(a) shows the state of the neurons after the first iteration step.
At this stage, every ixth neuron whose N,; equals to N;x is fired
because the first A term of (3) is positive and the second term is zero.
After the second step, only diagonally consecutive m neurons among
fired neurons are forced to remain fired as shown in Fig. 2(b). At the
second step, the second term of (3) encourages the exact matching
patterns to remain while the first term is zero.

A large number of simulation runs were performed with various
length of texts and patterns on Macintosh SE/30. Figs. 3-5 show the
simulation results of the text length 26, 100, and 100, respectively.
The text and the pattern data given in [4] were used in Fig. 3. The
characters of the text and the patterns in Figs. 4 and 5 were randomly
generated. In Fig. 4, the pattern “cdac” is located at two places in the
100-length text. Fig. 5 shows the example that the pattern “ abdadcda”
does not exist among the given text.

IV. ARCHITECTURE

Fig. 6 depicts the architecture of the proposed parallel string-search
system based on (2) where it is composed of m(n—m+1) processing
elements. S4;x and S;x represent circuits that consist of switches,
comparators, and a summing operator. Fig. 7 shows the detailed

circuit diagram of a neuron in Fig. 6. S, is a switch which turns on
at the first step and off at the second step. S, turns off at the first step
and on at the second step. Sa;x and Sgix are single-pole~double-
throw switches which select the input value for the i Xth neuron
according to the result of the comparator operation. The comparator
C piz compares two input values, Np; andN; x . If they are equal then
Saix changes the connection to the A-line so that the output of S$a:x
will be the value of the coefficient A. If Np; and N¢x are not equal
then S.4;x does not change and the output will be —A. ¥,.denotes
the summing operator that implements the summation term in (2). The
output of this operator is one of the input to the comparator CBi .
Fig. 8 shows the circuit of the summing operator. Fig. 9 describes
the implementation of a neuron using analog operational amplifiers
where the circuit is not minimized yet for the actual implementation.
The first operational amplifier in Fig. 9 performs integration that is
given by the following equation:

1 dUix _ U
‘ﬁ/( it )dt‘ CR “)
The second operation amplifier generates U, ;:
UiX 'y
- == fiX 5
( CR ) R'U;x 5)



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 2, MARCH/APRIL 1992

>

Sail] [Sa13d [Sa1d [Cazd [Sazd [Sazd [Sas

Saz4 [Sas

St Si2] [Si3] [Bz2] [B2] [S24] [33] [S34] [Sss

Example: n =5 m=3

Fig. 6. A circuit diagram of the string search neural network.
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Fig. 7. A detail diagram of one neuron.

The last component in Fig. 9 is a binary function determined by (1).
It is also possible to implement this algorithm using digital circuits.

V. CONCLUSION

Based on our simulation result, the proposed algorithm for solving
the string search problems was verified. It shows the algorithm’s
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Fig. 8. A summing operation circuit.
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Fig. 9. An analog circuit of the :zth neuron.

consistency. It finds a solution with two and only two iteration steps,
regardiess of the problem size. Our algorithm provides simultancous
search for more than one patterns in the same text. The algorithm
requires m(n — m + 1) processing elements and 2m(n —m+1)
comparators.
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Knowledge-Guided Visual Perception of 3-D Human
Gait from a Single Image Sequence

Zen Chen and Hsi-Jian Lee

Abstract—A computer vision method is presented to determine the 3-
D spatial locations of joints or feature points of a human body from a
film recording the h tion during walking. The proposed method
first applies the geometric projection theory to obtain a set of feasible
postures from a single image, then it makes use of the given dimensions
of the human stick figure, physiological and motion-specific knowledge to
constrain the feasible postures in both the single-frame analysis and the
multi-frame analysis. Finally a unique gait interpretation is selected by
an optimization algorithm. Computer simulations are used to illustrate
the ideas presented.

I. INTRODUCTION

In the past a large amount of work has been devoted to problems
of human locomotion, notably walking [1]-[3]. In the human gait
analysis the entire body motion during walking is represented as a
set of spatial trajectories of joints (or anatomic points) [4]-[7]. The
mechanics of joint forces and moments is characterized by angular
accelerations, velocities and displacements [2], [8]-[9]. Typical ap-
plication fields of the gait analysis include the physical therapy of
joint diseases, biomechanical simulations, kinesiological analysis and
mobile robot design, etc. [2], {10]-[11].

There are two major vision methods: stereo vision and monocular
vision. In the stereo vision at least two views of the subject are
simultaneously taken, then a triangulation method is applied to these
views to compute the 3-D coordinates for those joints appearing
in two views simultaneously [12]-[13]. On the other hand, the
monocular vision can determine the 3-D motion and structure (unique
up to a scaling factor) of the subject based on a number of consecutive
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frames [14]-[17]. Both approaches have their own advantages and
shortcomings [18].

In the human gait analysis, the stereo vision can determine the
joint positions without using any a priori knowledge. Since the
triangulation method completely relies on the two vectors defined
by the viewpoints and projected points, any digitization error of
projected points will lead to an inaccurate joint position. This is true
especially when the two vectors are nearly parallel to each other.
As a consequence, the obtained joint positions may not represent the
legal (i.e., original) human body model. Furthermore, it is difficult
to use any knowledge about the human model to refine the result in
the stereo vision method. Therefore, for the well-constrained human
body model, the stereo vision may not be suitable.

As to the monocular vision, the method requires a sufficient number
of joints on the subject to appear in consecutive frames. It is generally
impossible to have so many points for human body segments such
as arms and legs. Besides, only the structure, unique up to a scaling
factor, can be obtained instead of the exact body position. In the
field of the robot vision there are methods that can directly determine
the 3-D locations of the subject, if the dimensions of the subject
is known beforehand [19]-[20]. However, in these methods some
viewing conditions or object structure conditions are assumed; it is not
very realistic in the human gait analysis. So far there have been only
partial solutions to the visual interpretation problem of the general
human motion data [17], [21]-{22].

Up to now only geometrical and topological models of a human
body are employed in the gait interpretation which generally lead
to nonunique joint position recovery from the film. Rashid [21]}
indicated that the object topology and world knowledge are required
to help the interpretation. Herman [23] tried to obtain a meaningful
description of a human body motion while playing baseball by
using domain-dependent knowledge about the body model. O’Rourke
and Badler [22] used constraints of the human body model such
as distance constraints, joint angle limits, collision avoidance to
refine the 3-D joint positions. In a previous study, we also used
physiological and motion specific constraints to derive a small
set of feasible body postures for a single frame [7]. Therefore,
the application of various sources of knowledge will reduce the
joint position ambiguity and can lead to a small set of candidate
solutions.

1t is not very meaningful to describe a human motion with only
a single frame. Instead, the human motion is better described by a
collection of consecutive frames as a whole. Hence, certain candidate
solutions obtained in the single-frame analysis may be ruled out by
checking the interframe compatibility or consistency pertinent to the
motion analysis.

In this study a computer vision method for interpreting the human
motion during walking is presented. In Section II basic analyses for
gait interpretations are described which lead to a set of possible
interpretations. Then a computational model based on a graph search
theory is formulated for finding a unique interpretation solution
in Section IIl. Algorithm A" with a proper evaluation function is
proposed to find the solutions. Two sets of experimental data are
used in the simulation. The algorithm and simulation results are
given in Section IV. The results indicate that the algorithm has some
minor defects. In Section V two modifications are made to Algorithm
A’. After these changes, together with the aid of additional motion-
specific knowledge, a final unique gait interpretation is reached. The
simulation results show the goodness of the method. Section VI gives
the conclusion.

0018-9472/92$03.00 © 1992 IEEE



