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The Tank-Hopfield linear programming network is modified to solve job-shop scheduling, a classical 
optimization problem. Using a linear energy function, the approach described in this paper avoids the 
traditional problems associated with most Hopfield networks using quadratic energy functions. 
Although this approach requires more hardware (in terms of processing elements and resistive 
interconnects) than a recent approach by Zhou et al. (IEEE Trans. Neural Networks 2, 175-179, 
1991) the neurons in the modified Tank-Hopfield network do not perform extensive calculations, 
unlike those described by Zhou et al. 
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I. INTRODUCTION 

Hopfield neural networks have been successfully 
applied to solving a variety of interesting problems such 
as the travelling-salesman problem, analog-to-digital 
conversion, 2 resource allocation, tiling problem, k- 
colorability problem, and many others as described by 
Takefuji. 3 Recent criticisms of the Hopfield networks 
such as nonconvergence of the network to valid solu- 
tions, inability to locate the global minimum, and poor 
scaling properties, are due to the use of quadratic 
energy functions, as pointed out by Zhou et al.l This 
work, as an extension of earlier results reported in Ref 
4, uses a modified Tank-Hopfield linear programming 
network with a linear energy function which overcomes 
the shortcomings of the traditional quadratic energy 
functions. 

2. JOB-SHOP SCHEDULING 

Job-shop scheduling belongs to the large class of 
NP-complete (nondeterministic polynomial time com- 
plete) problems. An NP-complete problem exhibits an 
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exponential growth in the computation time as the size 
of the problem increases linearly, and is commonly 
referred to as a "hard" problem. In general, an 
NP-complete problem is one which, for some input of 
size N, takes a time proportional to at least 2 N. 
Conversely, a non-NP (deterministic polynomial time) 
problem shows a linear growth in the computation time 
as the size of the problem increases linearly. An exam- 
ple of non-NP problems is the application of an inser- 
tion sort routine on a table of N entries, where the 
computation time is proportional to N 2. NP-complete 
problems occur naturally in many situations. For exam- 
ple, there are more than N! ways to schedule N courses 
to various classrooms and instructors, which means that 
determining a complete schedule of a large number of 
classes pleasing to both students and professors can 
become a formidable task! 

In general, the job-shop scheduling problem can be 
stated as follows: given n jobs that have to be processed 
on m machines in a prescribed order under certain 
restrictive assumptions, what is then the optimal order 
in which each machine handles the jobs? In short, job- 
shop scheduling is a resource-allocation problem. The 
resources are called machines and basic tasks are called 
jobs. Each job may consist of several subtasks, referred 
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Fig. 1. (a) An example 2-job 3-machine job-shop problem. (b) The 

optimum schedule as produced by the network. 

to as operat ions ,  that are interrelated by precedence 
restrictions. Closely resembling the job-shop problem 
is processor scheduling in a multiprocessor computer 
system where the problem definition is: given a dead- 
line and a set of tasks of varying lengths to be per- 
formed on two identical processors, can the tasks be 
arranged so that the deadline is met? 

In a gejaeral job-shop problem, each operation is 
described by a triplet (i, j, k), i.e. operation j of job i is 
to be executed on machine k. Assuming there are m 
machines, then each job has exactly m operations, with 
exactly one operation on each machine. If there are n 
jobs, then each machine must perform n operations, 
which means that the number of possible sequences is 
therefore n! for each machine. If the sequences on each 
machine are independent, there are (n!)" schedules. 
However, since each job consists of several operations 
with a linear precedence structure, many of these 
schedules will have conflicts, and therefore are invalid 
solutions. 

An example 2-job 3-machine job-shop problem is 
shown by a Gantt chart in Fig. l(a) Each job-operation- 
machine triplet (i, j, k) is represented by a block; the 
length of block is equal to the processing time t~jk 
required to perform the operation, while the numbers 
on the horizontal axis represent completion times. Note 
that the processing order of each job by all machines 
and processing time of each operation are assumed 
known and fixed (static). 

A feasible schedule is one where all operations of 
each job can be placed on one time axis in precedence 
order and without overlap. In principle, there are 
infinitely many feasible schedules for a given job-shop 
problem, since an arbitrary amount of idle time can be 
inserted at any machine between pairs of operations. 
Superfluous idle time exists in a schedule if an oper- 

ation can be processed earlier in time without altering 
the operation sequences on any machine. In a nondelay 
schedule, no machine is kept idle at a time when it 
could begin processing some operation. Although non- 
delay schedules can be expected to provide very good 
solutions, there is no guarantee that they provide the 
optimum solutions. A job-shop problem is completely 
solved if the starting times of all operations are deter- 
mined, and the precedence relationships between the 
operations are not violated. In general, the optimality 
criteria for machine scheduling can be classified into 
various groups. These measures of performance 
include criteria based on completion-dates (i.e. the 
time at which the last job-operation is completed), 
flow-times (i.e. the amount of time the job spends in 
the shop), and makespan (i.e. the total elapsed time 
required to process all of a given set of jobs). In many 
cases, previous researchers have used minimization of 
makespan as the objective function. The optimum 
solution to the 2-job 3-machine problem is shown in 
Fig. l(b). 

3. PROBLEM FORMULATION 

Several integer linear programming formulations of 
the machine sequencing problem have been proposed 
in the past, but no attempt has been made to identify 
and exploit any special structure of this integer linear 
programming technique. Recently, the authors 4 pro- 
posed a mixed integer linear approach to solving job- 
shop scheduling. In this approach, the determination of 
an optimal job-shop schedule can be formulated as a 
linear programming with integer adjustments to mini- 
mize the starting times of all jobs, subject to a set of 
precedence constraints and restrictive assumptions. 

Let Sik denote the starting time of job i on machine k, 
and tijk the processing time for operation (i,j,  k). 
Assuming operation (i, j -  1, h) precedes (i, j, k), then 
the inequalities representing precedence constraints in 
order for a set of Sik to be feasible are: 

Sik--Sih~ti, j_l,h l<~j<~m, l<~i<<-n, (1) 

where m and n are the number of machines and the 
number of jobs, respectively. The condition that all 
starting times must be positive results in the constraint: 

Sik>~O l <~i<~n. (2) 

It is also necessary to ensure that no two operations are 
processed simultaneously by the same machine at the 
same time. For example, if job i precedes job p on 
machine k [i.e. operation (p ,q ,k )  starts after the 
completion of (i, j, k)], then 

Spk - S~k >1 t~jk. 

On the other hand, if job p precedes job i on machine 
k, it is also necessary that 

Sik -- Svk >t tvqk . 
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Using a "zero-one"  variable Y~pk to specify the oper- 
ation sequence, i.e. Yipk = 1 if job i precedes job p on 
machine k, and Y~pk = 0 otherwise, the above constraints 
become: 

S,k - S~k + H*(1 - Y~,k) ~ t,jk (3) 

Sit - Spk + n*Yipk ~ teqk (4) 

where constant H represents an arbitrary positive 
number greater than the maximum value of all process- 
ing times 6jkS such that the constraints (3) and (4) are 
satisfied. 

Therefore, the entire job-shop problem formulation 
can be summarized as minimizing the cost function 

~ Sik, 
i=1 

subject to 

Sik--Sih~ti.j-l,h l<~j~m,  l<~i<~n 

Spk-Sik + H*(1-yipk)>~tijk i>~ l ,p<~n, l <~k<-m 

Sik - -Spk-~H*Yipk~tpq  k i>~l,p<-n, l<~k<~m 

Sik >~O l ~i<~n 

where k~ is the machine which the last operation of job i 
is assigned. There are mn constraints of type (1) or type 
(2), and r a n ( n -  1) constraints of type (3) or type (4), 
giving a total number ofrnn 2 constraints. There are also 
mn number of Siks and m n ( n - 1 ) / 2  number of yipkS, 
resulting a total number of mn(n + 1)/2 variables. For a 
2-job 3-machine problem, there are a total of 12 
inequalities with 9 variables in the formulation, i .e. 

$11 ~>0 

S12 --  a l l  ~-~tll 1 

Sl3 -- $12 ~/'122 

521 - $23 ~ t213 

$22 - S:1 t> t221 

523 ~" 0 

$21 - St1 + H*(1 - Y121) ~> tm 

SH -- S:l + H*yI21 >I t221 

$22 - $12 + H*(1 - Y122) ~ fi22 

S12 - -  $22 ~- H*Y122t232 

$2~ - $13 + H*(1 - Y123) ~> tz33 

S13 - $23 + H ' y 1 2 3  I> t213. 

4. N E T W O R K  A R C H I T E C T U R E  

The analog Tank and Hopfield linear programming 
network 2 seeks to minimize a cost function 

F(A, V) = A. V 
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Fig. 2. The modified Tank and Hopfield network consisting of 
linear and nonlinear processors for solving mixed-integer linear 

programming. 

where A is row vector array of N coefficients for N 
variables which are components of column vector V. 
This linear cost function is subject to a set of M linear 
constraints among the N variables: 

Dj.V~>Bj j---1 . . . .  , M  

where matrix Dj contains the N variable coefficients of 
constraint equation j and column vector Bj are the 
bounds. 

The proposed network described in this paper for 
solving mixed integer-linear programming problems is 
based on a slightly modified Tank and Hopfield 
network, as shown in Fig. 2. The difference is the 
addition of nonlinear h-amplifiers. The output voltage 
Vi of linear g-amplifier represents the starting time of 
each operation after minimization, while output Yi of 
nonlinear h-amplifier represents the zero-one variable. 
The components of A are proportional to the input 
currents fed into the g- and h-amplifiers. Each g- and h- 
amplifier has an input time constant piCi which acts as a 
memory element. The g-amplifier circuit can be imple- 
mented as a noninverting amplifier which obeys a linear 
relationship, as shown in Fig. 3. The gain of the g- 

Rf 

R s 

Vin 

Vout 

Fig. 3. A noninverting amplifier circuit for implementing the linear 
g-amplifier, 
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amplifier is adjusted by varying R~ or Rf. The h- 
amplifier is simply a high-gain analog comparator, as 
shown in Fig. 4. The neutral position of the step 
function is adjusted by Vrcf- Description of other analog 
components such as variable resistors, and sigmoid 
amplifier circuits for implementing neural networks can 
be found in Ref. 5. 

The M outputs (W;) of the f-amplifers represent 
constraint satisfaction. This set of amplifiers have a 
nonlinear transfer function 

where 

o_ uj >o 
~Pi =f(UJ) = Uj Uj<O 

uj=I)j.v- Bj, 
i.e. if Uj<0 the output tlJj of the f-amplifier will be a 
large positive value, indicating a violation of the jth 
constraint. When this happens, a current of value 
(tlJjDji) will be fed back into the inputs of the g- and 
h-amplifiers, causing the outputs Vi to oscillate between 
+Vcc and -Vcc ,  where Vcc is the power supply vol- 
tage of the operational amplifiers. If Uj~> 0, the output 
tlJ i of the f-amplifier is zero, corresponding to a valid 

V. 0 
in 

~ o  

(a) 

Vout 

o Vou t 

+v (X 

Vref 

(b) 

Vin 

Voui 

v l 
0 

~-  Vin 

(c) 

Fig. 4. (a) An  analog comparator  for implementing an h-amplifier. 
(b) The adjusting step function. (c) The neutral position with V~e f = 0. 

R 2 

(a) 

o V 0 

Vo 

Vi 

(b) 

Fig. 5. (a) A precision inverting half-wave rectifier implementing the 
f-amplifier circuit. The diode D2 keeps the feedback path closed 
around the op-amp during the times when the rectifier diode D~ is in 
cut-off, thus preventing the op-amp from saturating, which causes 
slower slew-rate. (b) The transfer function of the circuit for R~ = R2. 

solution and no current will be fed back to the g- and 
h-amplifiers. As a result, the output voltages of the g- 
and h- amplifiers will be stable and directly pro- 
portional to the input bias currents Ais. 

The nonlinear f-amplifier can be implemented using 
a precision inverting half-wave rectifier, as shown in 
Fig. 5. The rectifier circuit operates in the following 
manner: For positive V~ diode D 2 conducts and closes 
the negative feedback loop around the op-amp. A 
virtual ground appears at the inverting input terminal 
and the op-amp output is clamped at - 0 . 7 V .  This 
negative voltage keeps D1 in cut-off, which means no 
current flows through feedback resistance R2. Hence 
the rectifier output voltage is zero. When G goes 
negative, the voltage at the op-amp output terminal 
becomes positive, causing 0 2 to be reverse-biased. 
Since the inverting input terminal of the op-amp always 
appears as virtual ground, diode D1 is forward-biased 
and thus conducts through R 2 and establishes a negative 
feedback loop around the op-amp. The current through 
the feedback resistance R 2 is equal to the current 
through input resistance R~. Therefore, if R~ = RE, then 
the output voltage of the rectifier is: 

Vo = Vl for VI<~0. 

The complete transfer function of the precision half- 
wave rectifier is shown in Fig. 5(b). Notice that the 
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slope of the characteristic can be set to any desired 
value by selecting the appropriate values for R~ and R2. 

Since the currents generated by the g- and h- 
amplifiers are summed at the inputs of the f-amplifiers, 
it is necessary that the time constants (P;G) at the 
inputs of g- and h-amplifiers be matched. If the re- 
sponse time of the f-amplifier is assumed to be neglig- 
ible compared to the g- and h-amplifiers, then the 
dynamics of the g-amplifier can be described by: 

d u; u, 
Dj, f(O/. B/) (5) Ci dt = - A i -  R"'~i- 

J 

where M=mn 2 (i.e. total number of constraints). 
Similarly, the differential equation describing the beha- 
vior of the h-amplifier is: 

d X i  X i  
Ci dt = - A i  - ~ -  Diif(D/" Y -  Bj). (6) 

J 

Consider an energy function for the entire circuit of the 
form: 

E = A i g  i + ~ d V + f(z)  dz 
i i " j 

+ E dY+ f(w) dw 
. . j 

where 

U=g-'(V) 

X = h - ' ( Y )  

z--Dj.V-B/ 
w = D j ' Y - B /  

P = mn (i.e. total number of Siks) 

Q = m n ( n -  1)/2 (i.e. total number o f  YipkS ). 

It can be easily shown that E is always a decreasing 
energy function which seeks out a minimum in E and 
stops. The proof is as follows: 

1 dV~ ,f~e x-~M dz 

d--7 = -~ 
i i ' j 

Q 1 d Y  i Q M,~ dw 
+E z:(w) 

i i j 

= ~_~ d V i  U, dV, 

J 

dV~ ~ X/dY/ Q M dK 
× --d-~-+ ~_~ ~ - ~ - +  ~ ~ f ( D ; . Y - B j ) D #  dt 

i i j 

_ ~ dVi {_c idUi  ~ Q dYi ( dXi) + 

~i ( d V i ~ 2 - - ~  (dYi~2 
= -  . C,g-"(V~) \ dt ] . Cgh-"(Y,) \ dt ] " 

t 

Since Ci is positive, and g-t'(Vi) and hV(Yi) are 
monotone-increasing and step functions, respectively, 
it follows that dE/dt<-O with dE/dt=O if dVi/dt= 
d Y;/dt = 0 for all i. In other words, the time evolution of 
the network is a motion in state space which seeks out a 
minimum in E and stops. 

5. N E T W O R K  SIMULATIONS 

To illustrate how the modified Tank and Hopfield 
network works, consider the formulation of an example 
2-job 3-machine problem shown in Fig. l(a). Let x~-x6 
uniquely identify the starting times of the operations, 
while Xy-X9 represent the zero-one variables, and V; 
represents the output voltage of the g- and h-amplifiers 
corresponding to variable x,. Choosing constant H = 10 
(i.e. any number greater than the maximum processing 
time value of 9), the complete set of inequalities is: 

x~>O 

--x~ +x2~>5 

- - x 2  --I-- x 3  ~ 8 

x 4 - - x 6 ~ > 7  

- - X  4 "4- X 5 ~ 3 

x6>~O 

--Xl + X4 -- 1 0 X 7 / >  - - 5  

X l - -  X 4 At- 1 0 X  7 ~ 3 

-x2 + x 5 -  10x8 ~> - 2  

x2 - x5 + 10x8 I> 9 

- x  3 - ] - x  6 - 1 0 x 9 ~  - 8  

X 3 - -  X 6 -'1"- 10x9 i> 7 .  

Then the corresponding Dj matrix is: 

1 0 0 0 0 0 0 0 0 
- 1  1 0 0 0 0 0 0 0 

0 -1  1 0 0 0 0 0 0 
0 0 0 1 0 -1  0 0 0 
0 0 0 -1  1 0 0 0 0 
0 0 0 0 0 1 0 0 0 

-1  0 0 1 0 0 -10 0 0 
1 0 0 - 1  0 0 10 0 0 
0 -1  0 0 1 0 0 -10  0 
0 1 0 0 -1  0 0 10 0 
0 0 -1  0 0 1 0 0 -10  
0 0 1 0 0 -1  0 0 10 

Using 1 kff2 as base unit, the resistor network for 
implementing D/becomes: 
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1K 1K ~ ~ ~ ~ ~ ~ 

1K ~ ~ 1K ~ ~ 0.1K ~ 
1K ~ ~ 1K ~ ~ 0.1K ~ 

1K ~ ~ 1K ~ ~ 0.1K 
1K ~ ~ 1K ~ w 0.1K 
~ 1K ~ ~ 1K ~ ~ 0.1K 

- ~  ~ 1K ~ ~ 1K ~ ~ 0.1K 

where "o0" denotes "no connection".  If equal weight is 
placed on all production costs such as operat ion costs, 
machine idle costs, etc., then the input bias currents 
- A #  can be arbitrarily set to - 1  mA.  If an external 
potential  of - 1  V is applied to provide the - A # ,  then 
the set of input resistances is [1 kf2, 1 kf2 . . . .  ,1 k£2]. 

Let each unit of processing time be represented by 
1 m A  of current.  Then the current vector representing 
the bounds of constraint equations is - B j  = [0, - 5  mA,  
- 8 m A ,  - 7 m A ,  - 3 m A ,  0, 5 m A ,  - 3 m A ,  2 m A ,  
- 9  mA,  8 mA,  - 7  mA]. Assuming the set of resistor 
values for implementing - B j  is [100 f2, 
100 f2 . . . . .  100 g2], then the input potentials to the set 
of resistors must be [0, - 5 0 0  mV,  - 8 0 0  mV, - 7 0 0  mV, 
- 3 0 0 m V ,  0, + 5 0 0 m V ,  - 3 0 0 m V ,  + 2 0 0 m V ,  
- 9 0 0  mV,  +800 mV,  - 7 0 0  mV]. The complete circuit 
for solving the 2-job 3-machine problem is shown in 
Fig. 6. 

When the network reaches stable states, the output 

- 1 v  

ikni ... I__ 

D12j : -D12"9[ 

Pl .P3 

II tl 

7 7 
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Vl Y3 
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eeo 
I 1 0 0 f 2  

I - -  

D12,9 

D12,1 
I - -  

17 ~ 7 
|eo 

v~ v12 

Fig. 6. Circuit diagram of the network for solving a 2-job 3-machine 
problem. 

voltages of the g- and h-amplifiers are measured.  The 
results are (in mV): 

V~=0.0, V2=0.5,  V3=1.3,  V4=0.7,  V s = l . 3 ,  

V6=0.0,  Y~=I .0 ,  Y2=l-0 ,  Y~=0.0. 

where Vis are outputs of the linear g-amplifiers repre- 
senting the starting times, and Y# are outputs of the 
h-amplifiers representing the z e r o - o n e  variables. By 
normalization, the starting times for the operations are: 

$11=0, Sj2=5,  Sj3 =13 ,  S2t=7,  $22 =13 ,  $23=0. 

I 
Job 1 ] 1,1,1 1,2,2 

i 

0 5 

Job2 I 2,1,3 [ 2,2,1 

0 7 

Job3 13,1.1 3,2,3 I 

0 1 8 

Job4 [ 4,1,2 [ 

0 4 

1 , 3 , 3  

13 15 

2,3,2 

10 19 

3,3,2 

18 

4,2,3 4,3,1 [ 

15 22 
(a) 

Machine 1 

3,1,1 

I 1,1,11 I [$5-] 
0 5 7 10 27 

Machine2 [ - ~  I 1,2,2 l 2,3,2 3,3,2 

0 4 5 13 22 

Machine31 2,1,3 I 3,2,3 1,3.31 4.2.3 I 
0 7 14 16 27 

(b) 

Fig. 7. (a) An example 4-job 3-machine job-shop problem. (b) A near-optimum 
schedule as produced by the simulator. 
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Figure l (b)  shows the Gant t  chart of  the job-shop 
schedule constructed f rom the above results, which 
turns out to be an op t imum schedule. Another  simula- 
tion run was per formed based on a 4-job 3-machine 
problem [Fig. 7(a)]. as repor ted in an earlier work. 4 
There  are N =  30 variables and M =  48 constraints in 
the formulation of a 4-job 3-machine problem. The 
result turned out to be a near-opt imum schedule as 
shown in Fig. 7(b). One  reason for not finding the 
op t imum solution is probably  due to the fact that the 
highly convoluted energy surface has many local 
minima. 

6. DISCUSSIONS 

It has been shown how a modified Tank and Hopfield 
network can be utilized to solve difficult optimization 
problems such as the classical job-shop scheduling. 
Zhou  et al. 1 also presented a modified Tank and 
Hopfield analog computat ional  network which exhibits 
linear scaling property ,  and thus appears  to be bet ter  
than the original approach by Foo and Takefuji  4. 
However ,  a closer look reveals that the former  
approach requires extensive computat ions by each 
neural processor.  Thus,  there is less network com- 
plexity, at the expense of more-complex processing by 
each neuron.  This contradicts the popular  concept of 
neurons with simple activation functions. The approach 
proposed here may require more  neurons and intercon- 
nects, but each neuron has a very simple activation 

function. Thus,  the network is self-contained and does 
not need extensive calculations as required in the 
approach by Zhou  et al. 

The software simulator written to simulate the 
behaviour of  the network uses the 4th-order 
R u n g e - K u t t a  integration technique to solve the differ- 
ential equations (5) and (6). So far, only small prob- 
lems have been simulated. Results shows that as the 
problem size increases, there is no guarantee of finding 
an opt imum solution using this deterministic analog 
computat ional  network,  but the network will always 
provide very good, valid solutions. 
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