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Abstract 

This paper investigates the scaling properties of neural networks for solving job-shop 
scheduling problems. Specifically, the Tank-Hopfield linear programming network is modi- 
fied to solve mixed integer linear programming with the addition of step-function amplifiers. 
Using a linear energy function, our approach avoids the traditional problems associated 
with most Hopfield networks using quadratic energy functions. Although our approach 
requires more hardware (in terms of processing elements and resistive interconnects) than a 
recent approach by Zhou et al. [21, the neurons in the modified Tank-Hopfield network do 
not perform extensive calculations unlike those described by Zhou et al. 

Keywords: Optimization; Scheduling; Mixed integer linear programing; Tank-Hopfield neu- 
ral networks 

1. Introduction 

Hopfield-type feedback neural networks have been successfully applied to 
solving a variety of interesting problems such as the traveling-salesman problem, 
analog-to-digital conversion [l], resource allocation, tiling problem, k-colorability 
problem, and many others as described by Takefuji [51. Recent criticisms of the 

* Corresponding author. Email: foo@evaxl2.eng.fsu.edu 

0925-2312/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved 
SSDI 0925-2312(94)00011-G 



80 S.Y. Foo et al. /Neurocomputing 8 (1995) 79-91 

Hopfield networks such as nonconvergence of the network to valid solutions, 
inability to locate the global minimum, and poor scaling properties, are due to the 
use of quadratic energy functions as pointed out by Zhou et al. [2]. This work is an 
extension of our earlier results reported in [4,6] which uses a modified Tank-Hop- 
field linear programming network with a linear energy function to overcome the 
shortcomings of the traditional quadratic energy functions. 

Job-shop scheduling belongs to the large class of NP-complete (nondeterminis- 
tic polynomial time complete) problems. An NP-complete problem exhibits an 
exponential growth in the computation time as the size of the problem increases 
linearly, and is commonly referred to as a ‘hard’ problem. In general, an NP-com- 
plete problem is one which, for some input of size N, takes a time proportional to 
at least 2N. NP-complete problems occur naturally in many situations. For exam- 
ple, there are more than N! ways to schedule N courses to various classrooms and 
instructors, which means that determining a complete schedule of a large number 
of classes pleasing to both students and professors can become a formidable task! 

In general, the job-shop scheduling problem can be stated as follows: Given IZ 
jobs that have to be processed on m machines in a prescribed order under certain 
restrictive assumptions, what is then the optimal order in which each machine 
handles the jobs? In short, job-shop scheduling is a resource allocation problem. 
The resources are called machines and basic tasks are called jobs. Each job may 
consist of several subtasks referred to as operations that are interrelated by 
precedence restrictions. A close resemblance to the job-shop problem is processor 
scheduling in a multiprocessor computer system where the problem definition is: 
Given a deadline and a set of tasks of varying length to be performed on two 
identical processors, can the tasks be arranged so that the deadline is met? 

In a general job-shop problem, each operation is described by a triplet (i, j, k), 
i.e. operation j of job i is to be executed on machine k. Assuming there are m 
machines, then each job has exactly m operations with exactly one operation on 
each machine. If there are n jobs, then each machine must perform n operations, 
which means that the number of possible sequences is therefore n! for each 
machine. If the sequences on each machine are independent, there are (n!)“’ 
schedules. However, since each job consists of several operations with a linear 
precedence structure, many of these schedules will have conflicts and therefore are 
invalid solutions. 

An example 4-job 3-machine job-shop problem is shown by a Gantt chart in Fig. 
l(a). Each job-operation-machine triplet (i, j, k) is represented by a block; the 
length of block is equal to the processing time tijk required to perform the 
operation while the numbers on the horizontal axis represent completion times. 
Note that the processing order of each job by all machines and processing time of 
each operation are assumed known and fixed (static). A feasible schedule is one 
where all operations of each job can be placed on one time axis in precedence 
order and without overlap. In principle, there are infinitely many feasible sched- 
ules for a given job-shop problem since an arbitrary amount of idle time can be 
inserted at any machine between pairs of operations. Superfluous idle time exists 
in a schedule if an operation can be processed earlier in time without altering the 
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Fig. 1. (a) An example 4-job 3-machine job-shop problem, (the horizontal axis denotes processing 
times); (b) a near optimum schedule produced by the simulator described in [6]. 

operation sequences on any machine. In a nondelay schedule, no machine is kept 
idle at a time when it could begin processing some operation. Although nondelay 
schedules can be expected to provide very good solutions, there is no guarantee 
that they provide the optimum solutions. A job-shop problem is completely solved 
if the starting times of all operations are determined, and the precedence relation- 
ships between the operations are not violated. In general, the optimality criteria 
for machine scheduling can be classified into various groups. These measures of 
performance include criteria based on completion-dates (i.e. the time at which the 
last job-operation is completed), flow-times (i.e. the amount of time the job spends 
in the shop), and makespan (i.e. the total elapsed time required to process all of a 
given set of jobs). In many cases, previous researchers have used minimization of 
makespan as the objective function. A near-optimum solution to the 4-job 3-mac- 
hine problem is shown in Fig. l(b) using the modified Tank-Hopfield network 
described in 161. 
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2. Problem formulation 

Several integer linear programming formulations of the machine sequencing 
problem have been proposed in the past but no attempt has been made to identify 
and exploit any special structure of this integer linear programming technique. 
Recently, we [4] proposed a mixed integer linear approach to solving job-shop 
scheduling. In our approach, the determination of an optimal job-shop schedule 
can be formulated as a linear programming with integer adjustments to minimize 
the starting times of all jobs subject to a set of precedence constraints and 
restrictive assumptions. 

Let Si, denote the starting time of job i on machine k, and tijk the processing 
time for operation (i, j, k). Assuming operation (i, j-l, h) precedes 6, j, k), then 
the inequalities representing precedence constraints in order for a set of Si, to be 
feasible are: 

Sik-Sih2ti,j_l,h lljlm, lliln (1) 

where m and II are the number of machines and number of jobs, respectively. The 
condition that all starting times must be positive results in the constraint: 

Si,10 llirn (2) 

It is also necessary to ensure that no two operations are processed simultaneously 
by the same machine at the same time. For example, if job i precedes job p on 
machine k (i.e. operation (p, q, k) starts after the completion of (i, j, k)), then 

On the other hand, if job p precedes job i on machine k, it is also necessary that 

Using a ‘zero-one’ variable yipk to specify the operation sequence, i.e. yipk = 1 if 
job i precedes job p on machine k, and yipk = 0 otherwise, the above constraints 
become: 

S,, - Si, + H * (1 - vipk) 2 tijk (3) 

sik - Spk -I-H * Yipk 2 ‘pqk (4) 

where constant H represents an arbitrary positive number greater than the 
maximum value of all processing times &‘s such that the constraints (3) and (4) 
are satisfied. 

Therefore, the entire job-shop problem formulation can be summarized as 
minimizing the cost function 

f: Sik, 

i=l 
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subject to 

sik - sib 2 ti,j-l,h lsjlm, lliln 

s pk-Sik+HX(1-Yipk)2tijk ill,pSn, l<klm 

Si, - Spk + H * Yipk 2 ‘pqk i2 1, p<n, llkrm 

sik 2 0 lli_<n 

where ki is the machine which the last operation of job i is assigned. There are an 
constraints of type (1) or type (21, and mn(n-1) constraints of type (3) or type (41, 
giving a total number of mn* constraints. There are also mn number of &k’s and 
mnbz - 1)/2 number Of yipk ‘s, resulting a total number of mn(n + 1)/2 variables. 
For example, in a 2-job 3-machine problem, there are a total of 12 inequalities with 
9 variables in the formulation, i.e. 

S,,lO 

SI, - &I 2 t111 

s13 - s12 2 t122 

‘21 - ‘23 2 t213 

s22 - s2, 2 t221 

S23 2 0 

S21 - Sll + H * Cl-~121) 2 t,,, 

&l - s21 + H * Y121 2 t221 

S22-Sl2+H * Cl-~122) 2t122 

S12 - S22 + H * ~122 2 I232 

S23-S13+H * tl-yl23) zt133 

s13 - ‘23 + H * y123 2 f213 

A feasible solution to the above set of contraint equations represents a valid (but 
not necessary optimal) solution to the job-shop problem. 

3. Neural network architecture 

The analog Tank and Hopfield linear programming network [l] seeks to 
minimize a cost function 

F(A, V) =A*V 

where A is row vector array of N coefficients for N variables which are compo- 
nents of column vector V. This linear cost function is subject to a set of M linear 
constraints among the N variables: 

Dj-V2Bj j= l,...,M 
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Fig. 2. The modified Tank and Hopfield network consisting of linear and nonlinear processors for 
solving job-shop scheduling problems, see [6]. 

where matrix Dj contain the N variable coefficients of constraint equation j and 
column vector Bj are the bounds. 

Our proposed network for solving mixed integer-linear programming problems 
is based on a slightly modified Tank and Hopfield network, as shown in Fig. 2. The 
difference is the addition of nonlinear step-function h-amplifiers. The output 
voltage K of linear g-amplifier represents the starting time of each operation after 
minimization, while output yi of nonlinear h-amplifier represents the zero-one 
variable. The components of A are proportional to the input currents fed into the 
g- and h-amplifiers. Each g- and h-amplifier has an input time constant PiC, 
which acts as a memory element. The descriptions of analog components for 
implementing the modified neural network can be found in [31 and [61. 

The A4 outputs <JIi> of the f-amplifers represent constraint satisfaction. This set 
of amplifiers have a nonlinear transfer function 
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where 

Uj = Dj - V - Bj 

i.e. if l_$ < 0 the output I,+~ of the f-amplifier will be a large positive value 
indicating a violation of the jth constraint. When this happens, a current of value 
(QjDji) will be fed back into the inputs of the g- and h-amplifiers, causing the 
outputs y to oscillate between +Vcc and -Vcc, where Vcc is the power supply 
voltage of the operational amplifiers. If L$z 0 the output 1,,5~ of the f-amplifier is 
zero corresponding to a valid solution and no current will be fed back to the g- and 
h-amplifiers. As a result, the output voltages of the g- and h-amplifers will be 
stable and directly proportional to the input bias currents Ai’s. 

Since the currents generated by the g- and h-amplifiers are summed at the 
inputs of the f-amplifiers, it is necessary that the time constants (piCi) at the 
inputs of g- and h-amplifiers be matched. If we assume the response time of the 
f-amplifier is negligible compared to the g- and h-amplifiers, then the dynamics of 
the g-amplifier can be described by: 

=i~ = -Ai - ~ - ~Djjf(Dj ’ V- Bj) 

I i 

(5) 

where A4 = ~11’ (i.e. total number of constraints). Similarly, the differential equa- 
tion describing the behavior of the h-amplifier is: 

Consider an energy function for the entire circuit of the form: 

E = biK + t;i’g-‘(V) dV+ i+(z) dz 
i i j 

where 

U=g_‘(V) 

X=P(Y) 

z=Dj*v-Bj 

w=Dj.Y-Bj 

P = mn (i.e. total number of &‘s) 

Q = mn( n - 1)/2 (i.e. total number of yipk’s) 
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It can be easily shown that E is always a decreasing energy function which seeks 
out a minima in E and stops. The proof is as follows: 

Since Ci is positive, and g-’ (v:.) and h-’ (yi) are monotone increasing and step 
functions, respectively, it follows that dE/dt I 0 with dE/dt = 0 if dl/,/dt = 
dy/dt = 0 for all i. In other words, the time evolution of the network is a motion 
in state space which seeks out a minima in E and stops. 

4. Scaling properties 

The total number of constraints is mn2 which is also equal to the number of 
f-amplifiers required. The total number of variables is mn(n + 1)/2 which is also 
equal to the number of g- and h-amplifiers. Fig. 3 shows the total number of 
constraints/variables required to solve a job-shop problem for a fixed m = 100 and 
varying n and a fixed it = 100 and varying m, respectively. For a fixed m = 100 
machines problem, the number of constraints/variables show a polynomial growth 
for practical 12 number of jobs. However, for a fixed IZ = 100 jobs, a linear 
relationship exists between the number of constraints/variables and the number 
of machines, m. 

The total number of amplifiers (neurons) required to implement the network is 
simply the sum of the number of constraints and variables in a given job-shop 
problem, as illustrated in Fig. 4. For a fixed n = 100 jobs, the total number of 
amplifiers (i.e. f, g, and h types) required grows linearly as the number of 
operations assigned to the machines; while a fixed m = 100 machines allocation 
shows an polynomial growth as the number of jobs increases. 
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Fig. 3. Graphs of total number of contraints and variables required for a n-job m-machine job-shop 
problem. 
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Fig. 4. Total number of amplifiers (f, g, and h-types) required for a n-job m-machine problem. 
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Fig. 5. Total maximum number of interconnects required for a n-job m-machine problem. 
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The total maximum number of interconnects required is two times the product 
of the number of constraints and the number of variables, as observed from the 
architecture of Fig. 2. However, in practice, only a small fraction (about one-fourth) 
of the interconnect matrix is actually utilized (see [6]). Fig. 5 shows the maximum 
interconnects required for practical problems. Even though these numbers seem 
astronomical, recent and future advances in optical and VLSI technologies would 
make the hardware implementations feasible. 

5. Discussions 

We have shown how a modified Tank and Hopfield network can be utilized to 
solve difficult optimization problems such as the classical job-shop scheduling. 
Zhou et al. [2] also presented a modified Tank and Hopfield analog computational 
network which exhibits linear scaling property, and thus appears to be better than 
the original approach by Foo and Takefuji [4]. However, a closer look reveals that 
their approach requires extensive computations by each neural processor. Thus, 
there is less network complexity at the expense of more complex processing by 
each neuron. This contradicts the popular concept of neurons with simple activa- 
tion functions. Our approach may require more neurons and interconnects, but 
each neuron has a very simple activation function. Thus, our network is self-con- 
tained and does not need extensive calculations as required in the approach by 
Zhou et al. 
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