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A Neural Network Approach to PLA Folding Problems

Kazuhiro Tsuchiya and Yoshiyasu Takefuji

Abstract—A near-optimum parallel algorithm for solving PLA folding
problems is presented in this paper where the problem is NP-complete and
one of the most fundamental problems in VLSI design: The proposed sys-
tem is composed of nx n neurons based on an artificial two-dimensional
maximum neural network where n is the number of inputs and outputs
or the number of product lines of PLA. The two-dimensional maximum
neurons generate the permutation of inputs and outputs or product lines.
Our algorithm can solve not only a simple folding problem but also
multiple, bipartite, and constrained folding problems. We have discovered
improved solutions in four benchmark problems over the best existing
algorithms using the proposed algorithm.

1. INTRODUCTION

Programmable Logic Array (PLA) is a very effective and efficient
means to implement multiple output combinational logic circuits
because of its structured array design which makes it possible to
transform its canonical logic form directly into a physical layout
[11-[3]. It is especially important in very large scale integrated circuits
(VLSI) or ultralarge scale integrated circuits (ULSI) where regular
structures and simple designs are required in order to shorten the
design and test time.

Fig. 1 shows an example of a representation of a PLA. Fig. 1(a)
shows the general structure of the PLA using an NMOS NOR circuit.
It consists of two arrays referred to as AND array (plane) and OR array
(plane). The AND array has input lines as columns and the OR array
has output lines as columns. Product lines (terms) run through both of
the arrays as rows. The outputs are the sum-of-products of the inputs.
This PLA has seven input lines (#A4 through #G), two output lines
(#H and #I), and six product lines (#1 to #6). Fig. 1(a) is replaced
by Fig. 1(b) in the PLA folding problem where the transistors are
replaced by black points. In this case, vertical intertransistor lines
are drawn instead of the input and output lines. A net is composed
of either an intertransistor line with transistors connected to it or a
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Fig. I. An example of the representation of a PLA. (a) An example of a
PLA by NMOS NOR circuit. {b) The representation of (a) in the PLA folding
problem,

transistor connected by no intertransistor lines. The number of nets
is the same as the total number of input lines and output lines.

PLA’s are, generally, very sparse and large even after logic
minimization {4], [5]. PLA column folding is a technique to fold
(pack) the nets with the minimum number of columns by optimizing
the permutation (order) of rows. Similarly, PLA row folding is
performed by folding the product lines. Since both folding methods
are basically the same, this paper focuses on column folding for the
purpose of illustration and pedagogy, although the proposed algorithm
is applicable to both folding methods.

Fig. 2 shows an example of PLA column folding for the PLA in
Fig. 1. This type of folding is called simple folding (SF) where a pair
of input nets or output nets share the same column, and the number
of pairs is maximized. Note that the input lines and the output lines
are either on the upper or on the lower sides of the columns so that
neither input lines nor output lines intersect each other. Usually, the
input nets and the output nets are folded within the AND array and the
OR array, respectively, in the PLA folding problem due to electrical
or physical constraints. A more general type of SF is called multiple
folding (MF) where the input nets and the output nets are folded as
much as possible to minimize the number of columns within the AND
array and the OR array, respectively. Fig. 3 depicts an example of
MF for the PLA in Fig. 1. Although the area can be smaller than that
of SF, routing the input lines and the output lines may be complicated
and another metal or polysilicon layer may even be necessary. MF
is especially effective when the PLA is used as a component of a
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Fig. 3. An example of MF.

large system which needs more than one metal or polysilicon layer.
Bipartite folding (BF) is a special type of SF, where column breaks
(cuts) between the two nets in the same column must occur at the
same horizontal level in both the AND array and the ORr array. Note
that if there exists a net across the break in a column, only the net can
be allocated in the column. Fig. 4 shows an example of BF for the
PLA in Fig. 1 where the column breaks occur between product lines
#1 and #6. Although the area could be larger than that of SF, there
are some advantages for BF, which leads to a reduction of the chip
area. For example, since the upper region above the break and the
lower region below the break can be considered as two individuat
PLA’s, subsequent BF can be further applied to those PLA’s. In
addition, since augmented circuits can be placed at the break as input
decoders and output buffers for testable design of the PLA, the space
for them is saved in terms of total chip area, and additional routing
and layout are simplified. Constrained folding is a restricted folding
where some constraints such as the order and/or place of the lines
are given and accommodated with other foldings. These PLA folding
problems have proved to be NP-complete [6]-[8]. The number of
possible solutions is O(C"!) or O(R!) where C' and R are the total
number of columns and rows, respectively.

Since the PLA folding leads to a significant reduction of silicon
area, the problem is one of the most fundamental and important layout
problems in VLSI or ULSI. Greer proposed an MF implementation
for the first time [9]. Wood presented an SF implementation [10}
in 1979. Since then, many algorithms have been proposed to solve
the PLA folding problems [7], [8], [111-[17]. Hachtel et al. applied
a graph-theoretic formulation and a heuristic algorithm to SF with
the time complexity O(C®) [7], [11]. Micheli et al. developed
a computer program called PRESURE which can accomplish not
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Fig. 4. An example of BF.

only SF or MF but also constrained row and column folding [12].
Egan et al. proposed BF for the first time and used a branch and
bound algorithm to discover optimal solutions [8]. Hwang er al.
also applied a graph-theoretic formulation and employed a best-
first search for finding optimal SF, MF, or constrained folding
with the time complexity max(Q(C*), O(R*)) [13]. Lecky et al.
transformed the folding problem to a maximum clique problem as
one of graph theory problems and used a greedy algorithm with
the time complexity of max(Q(C®), O(R®)) for SF or MF, and
max(O(C?log C), O( R? log R)) for BF [14]. Lussio et al. presented
a heuristic algorithm which builds MF row by row with the time
complexity of O(C*R + R*C) [15]. Hsu et al. combined logic
minimization and folding where a PLA personality matrix was
converted into a network and the optimal BF was obtained by
partitioning the network [16]. Liu et al. proposed a heuristic algorithm
based on a matrix representation for BF [17]. To our knowledge, no
parallel algorithm for the problem has been proposed. In this paper, a
near-optimum parallel algorithm using a two-dimensional maximum
neural network is proposed for the PLA folding problems, where
the state of the neurons represents a column or row permutation and
motion equations are given for SF, MF, BF and constrained folding
to evaluate every neuron.

In Section I, we review the basic concept of artificial neural
networks and explain our neural network representation used to
solve the problem. In Section III, we describe the neural network
parallel algorithm and discuss the experimental results where several
benchmark problems are used to justify the effectiveness of our
algorithm. We summarize this paper in Section IV.

II. THE NEURAL NETWORK REPRESENTATION

The first artificial neural network using sigmoidal neurons was in-
troduced by Hopfield and Tank for solving combinatorial optimization
problems [19]. Takefuji ef al. have proposed a hysteresis McCulloch-
Pitts neural network and a one-dimensional maximum (winner-
take-all) neural network for NP-complete problems [20]-[23]. The
mathematical model of the artificial neural networks consists of
two components; neurons and synaptic links. The output signal
transmitted from a neuron propagates to other neurons through the
synaptic links. Every artificial neuron has the input U and the output
V. The output V is given by the neuron’s input/output function f.
For example, conventional neuron’s input/output functions such as
that of the sigmoidal neuron model or the McCulloch-Pitts neuron
model are given by

Vi.) =f<U1,1) (0)

where the subscript ¢, j means the (7, j)th neuron.

— i (product line)
1 2 3 4 5 6

j (row) €—
2

Fig. 5. The 6 x 6 neural network array for Fig. 2

Our system is composed of an R x R neural network array for a
PLA column folding problem. The solution in Fig. 2 is provided by
the state of a 6 X 6 neural network array as shown in Fig. 5. Note that
each square represents an output state of the (¢, j )th neuron. The black
squares and the white squares show that the outputs of the neurons
generate 1°s and 0’s, respectively. The nonzero output of the (i, j)th
neuron means that product line #i is assigned to row #;. Because
of the PLA folding constraint, one and only one product line must
be assigned to each row and all the product lines must be assigned.
This means that one and only one neuron must generate a nonzero
output per row and per column in the R x R neural network array. In
order to satisfy this constraint, the two-dimensional maximum neuron
model is newly introduced. The input/output function of the neuron
model is given by

step 1. Vo = 1if Usp = max{U; ,}

step 2. Vog=1if Usy = max{U;; | ¢ # a,j # b}

step3. Voy=1if U.y = max{Ui; | i # a,c,j # b,d}

stepR. Vi, = 1if Uy = max{Ui;|i # a,ce,...,] #
b.d.f,...}s :
Vi1 =0 otherwise. )

where V; ; = 1 means that product line #i is embedded in row #j.
Those steps are to be executed sequentially. For example, product line
#a should be assigned to row #bif U,  is the largest among all U; ;’s,
then product line #¢ should be assigned to row #d if U, 4 is the largest
among all U, ;’s except for i = a or j = b, and so on. Note that if
more than one neuron has the largest input, only one neuron among
them should be selected. In R maximum neurons, R neurons always
generate nonzero outputs and the other (R® — R) neurons generate
zero so that not more than one product line is assigned per row.
This neuron model provides a faster convergence speed and higher
convergence rate than those of the conventional sigmoidal neuron or
McCulloch-Pitts neuron models. The input of the (7, j)th neuron is
determined and updated by the following motion equation.

The motion equation represents the synaptic links. It shows in-
terconnections between the (¢, j)th neuron and other neurons. The
motion equation of the (i, j)th neuron with a discrete input/output
function is given by

AU ABEVig,-Vigoooos Vo)

At AV, @

This means that the change of the input of the (¢,j)th neuron is
given by the partial derivatives of the computational energy function
E with respect to the output of the (7, j)th neuron where E follows
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an (n X n)-variable function: E(Vy 1..... V5 ;,..., Vu »n). The goal
of the artificial neural networks for solving optimization problems is
to minimize the fabricated computational energy function E in (2),
for which the artificial neural networks provide a parallel gradient
descent method. The partial derivatives of E with respect to V% ;,
however, are difficult to describe for some problems.

The left term in (2), instead, can usually be constructed by
considering the necessary and sufficient constraints and/or the cost
function from the given problem. The proposed two-dimensional
maximum neural network needs only the cost function because the
neuron model includes the constraints. The first-order Euler method
is used in our algorithm to update U; ; by the left term. The number
of columns is the cost to be minimized for the PLA folding problem.
Therefore, the motion equation is approximated by

AU,
At

=Q-r 3)

where  and P are the user-defined objective number of columns
and the evaluated number of columns, respectively. In this paper, ¢}
is set to be the same as the maximum number of transistors in the
same product line, which is the lower limit of (). It means that %
is always negative or zero. P’ is evaluated in the following ways:

1) For BF, given a row permutation by (1), the number of columns
is simply evaluated by folding the input nets and output nets
whose transistors are all in the upper row above the break in
the upper region of the PLA and folding those in the lower row
below the break in the lower region.

2) For MF, a left-edge-first algorithm is applied [24] which can
fold the input nets and output nets with the smallest number of
columns within a given row permutation by (1). The left-edge-
first algorithm for MF is shown in Appendix I.

3) For SF, a modified left-edge-first algorithm is used. Here a
constraint that two input nets or two output nets at the most
share the same column is added to the left-edge-first algorithm.

4) For the constraint folding, other constraints are added to the
above algorithms.

In order to calculate (3) for the (7,j)th neuron which generates a
zero output, it is assumed that product line #: is assigned to row
#j. For example, to calculate AUs 4 /At in Fig. 2, product line #5 is
assigned to row #4 temporarily as shown in Figs. 6(a) and (b) while
product line #6 in row #4 is moved to row #5 temporarily, and then
the modified left-edge-first algorithm is applied to compute P. P is
6 in this case and () is 3. Therefore, AUs 4/At = 3 -6 = =3,
To calculate AUs 5/At, the assignment of product line #5 to row #5
must be maintained because product line #5 has already been assigned
to row #5 by (1). Since P is 5 as shown in Fig. 2 or Fig. 6(b),
AUs 5 /At = —2. Equation (3) describes the degree of penalty which
discourages the highly penalized neurons from generating a nonzero
output.

In order to improve the global minimum convergence and to
accelerate the simulation speed, (3) was replaced by

If (+ mod 10) < w then % =(Q - P)V.,.
AU
else At T Q—-P 4)

where ¢ and w are the number of iteration steps and a constant param-
eter, respectively. Note that w is one and only one parameter for the
proposed system. This method helps the state of the system to escape
from local minima. The first equation is activated when the (i, j)th
neuron generates a nonzero output. Convergence theorem/proof of the
two-dimensional maximum neural network is given in Appendix IIL.
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Fig. 6. How to calculate AUs 4/Aft. (a) The neural network array repre-
sentation. (b) The layout representation.

III. PARALLEL ALGORITHM AND EXPERIMENTAL RESULTS

A simulator based on the proposed neural network was developed
and a synchronous parallel system and a sequential system were sim-
ulated. Both systems were implemented on a Macintosh PowerBook
170 and an HP 9000/710 computer, although the parallel algorithm
is executable either on a sequential machine or on a parallel one.
The following steps describe the proposed algorithm based on the
synchronous parallel system for a PLA column folding problem.
Note that ¢_limit is the maximum number of iteration steps for the
system termination condition and that best_P is the smallest number
of columns the system discovers.

step 0. Set ¢+ = 0 and best_P = 10000, and set ¢_limit and w for
the PLA folding problem.

step 1. Initialize values of U; ;(¢) for 7,7 = 1,...,R using
uniformly randomized numbers.
step 2. Evaluate V; ;(f) fori,j = 1,..., R, using (1).
step 3. Compute P and (4) of the R x R neural network for
i, = 1,..., R to obtain AU; ;(t)
AT;
AU (1) = =2 5
=25 ®
step 4. If best_P > P, then generate the solution and set best_P =
P.
step 5. Update U; ;(t + 1) for i,j = 1,..., R, based on the

first-order Euler method

Uij(t+ 1) =U; () + AU, ;(t) (6)
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TABLE I
Four BENCHMARK PROBLEMS AND COMPARISON

Problem # | The number | The number | Folding The number of columns | CPU time [Conv. rate
[Refrence] | of rows #1 jof nets *1 type  |by this work |by reference [sec] [%] *2
BF 12 121171 0.85 | 100
1 [17] 19 20 SF 11 NA 0.43 | 100
(alu) MF 7 NA 9.5 54.4
BF 20 21[8][16] | 0383 100
2 [18] 18 32(30) SF 15 NA 4.4 98.6
MF 11 NA 8.6 64.3
BF 26 NA 59 92.0
3 [13] 21 38 SF 21 % H%{Hj{ 47 100
MF 19 NA 25 78.9
BF 25 25 8][16] | 27 78.1
4 11 5239 a2 SF 22 25 [11] 23 99.9
MF 13 18 [15] 190 43
14 95 67.4

NA: Not available

*]: Virtually 30 nets in problem #2 and 39 distinct product lines in problem #4.
*2: Within 2000 iteration steps for MF, 1000 iteration steps otherwise.

step 6. Evaluate V; ;(t + 1) fori,j = 1...., R, using (1).
step 7. If ¢ = t_limit then terminate this procedure else increment
t by 1 and go to the step 3.

The first-order Euler method was used to solve R? equations in (4)
numerically. Steps 3 through 5 can run in parallel. It means that the
computational time of steps 3 and 5 becomes 1/R* if the system
runs on a parallel machine with R? processing elements. In the
sequential algorithm, (5) and (6) are calculated sequentially, neuron
by neuron. The results of the above mentioned parallel algorithm and
the sequential one were almost the same in terms of solution quality.
Therefore, we only show the results of the parallel algorithm.

We have examined the four benchmark problems to test our
algorithm for BF, SF, and MF. Table I shows our results and those of
the best existing algorithms. OQur algorithm discovered significantly
improved solutions which have a smaller number of columns over the
best existing algorithms especially in the larger size problem, #4. The
result of 13 columns for MF in problem #4 leads to 28% reduction of
the area by [15]. Our simulation results show that the solution quality
of the proposed neural network does not degrade with the problem
size within the range of Table 1. Table I also shows the average CPU
time and the convergence rate. Note that the average CPU time was
measured on the HP 9000/710 and that the convergence rate is the
convergence frequency to the number of columns shown in Table I
when different initial uniform-random states were used. The average
CPU time was more than ten times longer than that of the existing
algorithms. However, it is expected to be much less if it is run on a
parallel machine. The convergence rate was more than 50% in most
of the cases. Note that although the convergence rate to 13 columns
for MF in problem #4 was 4.3%, the one to 14 was 67.4%.

IV. CONCLUSION

In this paper we have proposed a near-optimum parallel algorithm
using the two-dimensional maximum neural network for the PLA
folding problems in VLSI design. The proposed algorithm requires
an n X n neural network where n is the number of product lines or
nets. Our algorithm is not only applicable to simple folding but also
to multiple folding, bipartite folding, and constrained folding. The
simulation results demonstrate the effectiveness of the proposed al-
gorithm in four benchmark problems. We have discovered significant
improvements in terms of solution quality using the algorithm.

We are planning to apply the proposed algorithm to other kinds
of layout problems such as gate assignment problems. We will also
try to install the system on a parallel machine in the future in order
to solve larger size problems and to measure the performance of the
proposed algorithm in terms of the computational time.

APPENDIX 1
THE LEFT-EDGE-FIRST ALGORITHM FOR MF

The following procedure is used for the left-edge-first algorithm
to fold the input nets and output nets with the smallest number of
columns within a given row permutation. The proof of this algorithm
is given in [24]. Note that NET is the number of nets allocated in the
columns, COLUMN is the column number being used for assigning
the nets, and ROW is the row number being used for the COLUMN.

step 0. Set NET = 0, COLUMN = 1, and ROW = 1.
step 1. Continue the following procedure from step 1-a through
step 1-d while NET < “the number of input lines.”
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step 1-a. Find an input net which is not assigned to any
column, whose topmost transistor is located in
ROW or below ROW but above those of the
other input nets which are not assigned to any
column.

step 1-b. If there is more than one input net which satisfies
the above condition, choose one.

step 1-c. If there is no net satisfying the above condition
in step 1-a, then set COLUMN = COLUMN-+1,
ROW = 1, and go to step 1-a.

step 1-d. Assign the net to COLUMN and set NET =
NET+ 1, ROW = “the row in which the bottom
transistor of the net is located” + 1.

step 2. set ROW = 1 and continue the following procedure from
step 2-a through step 2-b while NET < “the number of
input lines and output lines.”

step 2-a. Find an output net which is not assigned to any
column, whose topmost transistor is located in
ROW or below ROW but above those of the
other output nets which are not assigned to any
column.

step 2-b. If there is more than one output net which
satisfies the above condition, chose one.

step 2-c. If there is no net satisfying the above condition
in step 2-a, then set COLUMN = COLUMN+1,
ROW =1, and go to step 2-a.

step 2-d. Assign the net to COLUMN and set NET =
NET+ 1, ROW = “the row in which the bottom
transistor of the net is located” + 1.

APPENDIX 1I
CONVERGENCE PROPERTY OF THE
TwO-DIMENSIONAL MAXIMUM NEURAL NETWORK

The convergence property of the two-dimensional maximum neural
network is determined by the time derivatives of the energy of the
system, %—% Lemma 1 is introduced to prove that the proposed
system is always allowed to converge to the equilibrium state or
the optimal (near-optimum) solution.

Lemma 1: ‘Z—f < 0 is satisfied under two conditions such as

1) A_J_L = AAVE =Q—-P <0and

2) The 1nput/output function of the neuron model is given by

step 1. Voo = 1if Uy p = max{U; ;}
step2. Veg=1ifU,q = m&X{Ui,j | i#a, j# b}
step 3. Viy = 1if Uy = max{Ui | i # a,c, j # b,d}

stepn. Voo =1ifU,n = max{Ui; |t # a,c.e....,j #
bd, f....};
Vii =0 otherwise. (1)

Proof: Consider the derivatives of the computational energy E
with respect to time .

AE AU ; AVi; AE
Tf_zz At AU; ; AV,

:MZZ< At ) Az?j

where AAVIZ’],
Let %%i be
Ul',]’(t + At) — Uivj(t)
At
and ﬁxlj be

Vit + At) — Vi (1)
U, j(t+ At = Ui (1)

Assume that only the input of the («, b)th neuron is changed during
time ¢ and ¢t + At in the system.

AU\ AV,
_ZZ< Atj) AUi_;-

AU

Ui s+ A8 — Us ()N Vi (8 4+ At) — Vi j (1)
_ZZ< At : ) Ui,j(t-i—.ﬁt)—Ui,](t)
=-XX Pl S B Wi+ ) + Vi)

ca. t+At - Da,
__Uas( (At))Q b(t )(Va,b(t+ At) = Vau (1))

a,b

—RT is negative (condition 1). Therefore, it is necessary and
sufficient to consider the following two cases (condition 2):

If

1) Vas(t 4+ At) = Vi u(t)

2) Vap(t+ A6 =0, Vou(t) = 1

case 1 is satisfied, then

AU\ AVL,;
-UX () s

because V; »(t + At) — V., (t) = 0.

If

case 2 is satisfied, then

B AU x,,
T () F

because Vo, (t + At) = Vo (1) = —1 and Toal*20-00(0 -

A—ii’j = @ — P < 0. (condition 1)

Therefore %’% <0. O
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