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A generalized maximum neural network for the module orientation
problem

KUQO CHUN LEEf} and YOSHIYASU TAKEFUJIt

Several neuron models and artificial neural networks have been intensively studied
since McCulloch and Pitts proposed the simplified neuron model in 1943. In this
paper a generalized maximum neural network for parallel computing is introduced
to solve the module orientation problem which belongs to the class of NP-complete
problems. The goal of the module orientation problem in VLSI circuits or printed
circuit boards is to minimize the total wire length by flipping each module with
respect to its vertical and/or horizontal axes of symmetry. The circuit diagram of
the generalized maximum neural network is shown and compared with the best
known algorithm proposed by Libeskind-Hadas and Liu. The theoretical/empirical
convergence analysis is discussed where a massive number of simulation runs were
performed using more than one thousand instances. As far as we have observed the
behavior of the proposed system, it converges within O(1) time regardless of the
problem size and it performs better than the best known algorithm in terms of the
solution quality and the computation time.

1. Introduction

Different methodologies have been studied for optimization problems which are
very essential in computational research. Recent progress in software and VLSI
technologies has motivated us to fully exploit perallelism of the artificial neural
network for solving this hard problem. The study of the artificial neural network
system began in the early 1940s. McCulloch and Pitts (1943) showed that a neuron
can be modelled as a simple threshold device which performs a binary logic function.
Later the neuron model was refined in Rosenblatt’s Perceptron {(Rosenblatt 1958)
and Widrow and Hoff’s Adaline (Widrow and Hoff 1960). During the 1970s,
Carpenter and Grossberg (1987) proposed a neural network called Adaptive
Resonance Theory (ART) based on the assumption that the brain spontaneously
organizes itself into recognition codes. At the same time, Kohonen (1984) developed
a self-organizing process by which an optimal topographical mapping of the signal is
constructed. Recently, Rumelhart and McClelland (1986) proposed the back-
propagation algorithm based on the feedforward multi-layered neural network.
Hopfield and Tank (1985) used an artificial neural network to solve combinatorial
optimization problems such as the travelling salesman problem (TSP),

The module orientation problem has been studied by Yamada and Liu (1988)
and a similar problem has been investigated by Yao, Yamada, and Liu (1989).
Libeskind-Hadas and Liu (1989) used the Hopfield neural network to solve the
module orientation problem. In the Libeskind-Hadas and Liu’s Hopfield neural
network, the gradient descent method seeks the local minimum of the given
Liapunov energy function E. Generally, the Liapunov energy function E is given by
the constraints and the cost function. The synaptic weights between neurons are
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determined by the energy function E. In general, the state of the system in the
Hopfield (1984) neural network is guaranteed to converge to one of the local minima
instead of the global minimum. However, the local minima do not always represent
feasible solutions. In other words, the proof of the local minimum convergence in
the Hopfield neural network does not always guarantec the feasible solution
although its fast convergence speed is very attractive. In this paper a generalized
maximum neural network is proposed. The generalized maximum necural network
not only enables the local minima to always be feasible solutions but alse provides
the fast local minimum convergence.

The NP-complete (Nondeterministic Polynomial) problems are classified as hard
problems. It is believed that no polynomial time algorithm exists for NP-complete
problems (Garey and Johnson 1979). Therefore, the near-optimum solution is
practically acceptable as long as it can be obtained in a reasonable computation
time. Most of the existing methods of solving NP-complete problem are based on
heuristics or relaxation of the constraints. In this paper a near-optimum parallel
algorithm based on the generalized maximum neural network is proposed for the
module orientation problem which was proven to be NP-complete (Libeskind-
Hadas and Liu 1989). A massive number of simulation runs were performed to
investigate the capability of the proposed system.

2. Models of the processing element

An artificial neutral network consists of a massive number of simple processing
clements that are highly interconnected. The processing element is called an artificial
neuron, because it performs the simplified function of a biological neuron. The
mathematical model of the artificial neural network is composed of two important
components: neurons and synaptic links. The output signal generated by one neuron
propagates to the others through the synaptic links. The new state of the neuron is
determined by the linear sum of the weighted input signals. McCulloch and Pitts
(1943) proposed a mathematical neuron model based on biclogical computation.
The input/output function is given by V,=f(U)=1if U,;=0 and 0 otherwise where V,
and U; are the output and the input of the ith neuron respectively. An artificial
neural network for solving combinatorial optimization problems was first intro-
duced by Hopfield and Tank (1985). The differentiable, continuous and non-
decreasing neuron model, sigmoid function, was used to model the relation between
the output ¥ and the input U, for the ith neuron given by

V;=g(U)=4{1 +tanh (AU})] (1)

The constant 4 is known as gain and determines the slope of the sigmoid function.
The different slopes of the sigmoid function are shown in Fig. 1 In their paper
{Hopfield and Tank 1985), the symmetric conductance matrix T with zero diagonal
elements was used to guarantee the local minimum convergence. Hopfield and Tank
mapped the TSP onto an N x N artificial neural network. The computational energy
function E for an N-city problem is given by

A N N N B N N C N N 2
P S D A ATES ) V,‘ivy..-+—((z ) v,..-—zv))
2x=]|=1j#i 2;=1x=1x:y 2 i=1x=1
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where d, , is the distance between city x and city y and 4, B, C, and D are coefficient
parameters.

The conductance matrix T in the Hopfield neural network is determined by the
energy function E and is given by

T; _A(Sx,y(l_él,j)_Béi](l_6x.y)_C_Ddx,y(5j.i+l+6j,i—l) (3)

Lyi=
The external input bias current for each neuron is given by

I.,=CN (4)
The equation of motion of the neuron in row x and column ¢ is given by

dU,; U, @E
d ~ t a8V,

(%)

It has been shown that the decay term — U,,/r has an undesirable effect for the
convergence of the system (Takefuji and Lee 1991), because it increases the energy
function E in (2) under some conditions. In other words, E is not the Liapunov
energy function of the system. Many researchers use a large value for 7 in order to
eliminate this undesirable effect. It is suggested that the decay term should be
removed from the motion equation based on both theoretical and empirical reasons
(Takefuji and Lee 1991). The McCulloch-Pitts neuron model and the modified
McCulloch-Pitts neuron model have been successfully used (without the decay term
in the motion equation) for graph planarization problems (Takefuji and Lee 1989),
tiling problems Takefuji and Lee (1990a), RNA secondary structure prediction
problems (Takefuji, Lin and Lee 1990, Takefuji, Chen, Lee and Huffman 1990),
maximum independent set problems (Takefuji et al. 1990), sorting problems (Take-
fuji and Lee 19904), k-colourability problems (Takefuji and Lee 1991), and spare
allocation problems (Funabiki and Takefuji 1991).

In this paper a generalized maximum neural network is introduced for the
module orientation problem. The generalized maximum neural network consists of
M clusters where each cluster is composed of » processing elements. The total
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Figure 1. Sigmoid function for A=0-1 and 1=001.
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number of required processing elements is M xn. One and only one processing
element among # processing elements per cluster is always encouraged to fire in the
generalized maximum neural network. The input/output function of the ith genera-
lized maximum neutron in the mth cluster is given by: ¥V, ;=1 if f(U,)
=max{f(U,.1),..., f(U, )}, 0 otherwise where f is a non-decreasing function. If
the function f(U, ;) is equal to U, ;, the network is called a maximum neural
network where it is a subset of the generalized maximum neural network. The
maximum neural network model has been successfully used to solve the tiling
problem (Takefuji and Lee 1990 q), the max cut problem (Lee and Takefuji 1991),
the bipartite subgraph problem (Lee er al. 1991), and the graph partition problem
(Lee et al. 1991).

3. The module orientation problem

For the design of very large scale integrated circuits, it is important to place
properly the individual modules while minimizing area and/or the total wire length.
The module orientation problem has been studied by Yamada and Liu (1988) and a
similar problem has been investigated by Yao er al. (1989). It is assumed that all the
modules have already been placed according to some placement algorithm (Hanan
et al. 1976, Preas and Karger 1988). The second assumption is that the pin positions
on each module are fixed. The goal of the problem is to minimize the total wire
length by flipping each module with respect to its vertical and/or horizontal axes of
symmetry as shown in Fig. 2. This means that there are only four possible
orientations per module. A similar problem, the module rotation problem, was
discussed by Libeskind-Hadas and Liu (1988} who proved that the module orien-
tation problem and the medule rotation problem are both NP-complete.

For simplicity, the Euclidean metric is used to define the distance between two
pins that are to be connected. Let p, ¢ be two pins which belong to the same net N.
Let (x,,y,), (x,,,) represent the positions of p and ¢ according to a certain
orientation of the modules. The goal is to minimize the total wire length L where the
summation is carried out over all pairs of pins which belong to the same net. The
total wire length L in M modules is given by

L= T (0= 2+ (= p) 12 =53

p.qeN

_.Mg
s.M&

dmi.m‘j Vm,l‘ Vm‘j (6)

m¥m

where d,,; ,»; denotes the total length of all wires between the mth module in the ith
orientation and the m'th module in the jth orientation. Note that V,, ;=1 if the mth
module is in the ith orientation, and 0 otherwise.

The problem is to determine the optimal orientation for each module in order
to minimize L. Libeskind-Hadas and Liu mapped the problem onto the Hopfield

N

A N

Figure 2. Four orientations for one module.
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neural network using a 4 x M neural array where M denotes the number of modules
and each module has 4 possible orientations. The mapping procedure is similar to
that of TSP proposed by Hopfield and Tank (1985) where an N x N neural array is
employed for an N-city problem. For the module orientation problem, Libeskind-
Hadas and Liu give the following energy function:

M

%z ZZZMm ©)

m=1m+mi

where d,,; .; denotes the total length of all wires between the mth module in the ith
orientation and the m'th module in the jth orientation. The feasible solution for the
module orientation problem must have one and only one neuron fired per module.

The disadvantages of the computational energy E in (7) can be summarized as

follows.

(1) Their proposed system requires more than one hundred iteration steps to
converge for small size problems. It requires several thousand iteration steps
for large size problems. The detection of the system convergence is
ambiguous.

{2) The sigmoid neuron was used instead of the McCulloch—Pitts neuron. The
output function of sigmeid is always smaller than 1 unless a very high gain is
used. Therefore, it is very difficult to determine whether the neuron is fired or
not. The first two terms in (7) will not be satisfied even if the system reaches
one of the equilibrium states or the local minimum.

(3) If a very high gain 1 is used for the sigmoid neuron, the energy function E
and the sigmoid neuron model cannot guarantee that a valid configuration is
reached although the system converges to the local minimum. In other
words, the state of the local minimum is not always equivalent to a feasible
solution.

(4) The second term in the (7) increases the complexity of connections in the
network.

(5) There is no systematic way to tune the parameters in the computational
energy function of (7) which has three coefficients 4, B, and C. The scaling of
the parameters will heavily influence the performance of the system and the
solution quality. Analysis of the sensitivity of the parameters is questionable
and the result is often inconclusive.

Remember that there are many candidates for the neural representation and the
computation energy E. The first two terms in (7) can be replaced by the local
constraint such that one and only one orientation is allowed for each module. The
modified energy function E is given by

mm'tmi
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If the McCulloch-Pitts neuren is used, some of the disadvantages can be eliminated
in (8). However, the serious problem for tuning parameters A and C still remains
and the McCulloch-Pitts neuron model cannot always guarantee a valid configu-
ration whenever the state of the system reaches a local minimum. In the next §, a
generalized maximum neural network is introduced where it not only eliminates all
of those disadvantages and difficulties but also provides better solutions than the
best known algorithms,

4. Neural representaton using the generalized maximum neural network

The Hopfield neural network is based on the Liapunov energy function E. The
energy function E usually contains several terms which describe the validity of the
solution and the solution quality. For example, there are four terms in (2) for TSP
and three terms in (7) for the module orientation problem. For TSP and the module
orientation problem, the goal is to minimize the total distance or length. Remember
that the last term only describes the total distance or length. For TSP, the percentage
of the valid tour is very low even for the small size problem. Furthermore, the
determination of the parameters in the computational energy function R is usually
based on trial and error. Trial and error approaches are often criticized when the
problem size increases.

The generalized maximum neural network can be used for solving the module
orientation problem. The generalized maximum neuron function is given by: V,, ;=1
if f(U,,;) is the maximum value among f(U, ,).f(U,, 2).f(Up ) and f(U,,), 0
otherwise where f is a non-decreasing function. Due to the external constraint placed
upon a collection of neurons, there is always one and only one neuron fired per
module. The first term in (8) is always zero. Therefore, (8) is simply reduced to the
following form:

525 Z Z Z Z dm:‘.m'ij.:'Vm'j (9)

The equation of motion for the neuron of the mth module in the ith orientation
without the decay term is given by

du,.; L
dr —=—C Z Z dmi.m'j Vm’j (]0)
m¥*mji=1

The conductance T is given by
Tmi.m’j=Cdmi.m’j (]l)

Note that there is no bias in the generalized neural network.

Note that minimization of the energy function E in (9) is exactly equal to
minimization of L in (6) for C=1. The generalized maximum neural network always
generates a valid configuration for the module orientation problem. It is not
required to tune the coefficient parameters in the computational energy function E,
while the energy function in (2), (7), and (8) must suffer from the presence of
parameters that must be tuned. Whenever or wherever the system converges, the
corresponding configuration is always forced to be a valid solution; none of the
existing Hopfield neural networks can guarantee this property.
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The circit diagrams for the Hopfield neural network, the generalized maximum
neural network, and the maximum neural network are shown in Figs 3 and 4
respectively for the M-module orientation problem. In Fig. 3, the bias for each input
is required in the Hopfield neural network. Note that no bias is needed in the
generalized maximum neural network. If the bias of each input has to be adjusted
individually, it will increase the circuit design cost. In the Hopfield neural network,
there are two kinds of outputs (excitatory and inhibitory output) for each processing
element. On the other hand, the generalized neural network requires only inhibitory
outputs. This property not only decreases the number of required processing
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Figure 3. The network architecture: (a) processing element with the input U and output V
and V; (b) Hopfield neural network for the module orientation problem.
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elements but also reduces the number of connections between processing clements
from 4M? 1o M ? where M is the number of modules. The maximum neural network
in Fig. 4(¢) has the smallest chip size and the least number of interconnections
among the three circuits.

5. Convergence of the generalized maximum neural network

Lemma | and Lemma 2 are introduced to prove that the proposed system is
always allowed to converge to the equilibrium state or the optimal (near-optimum)
solution.

Lemma |
dE . . .. dU; JE
aTsO is satisfied under two conditions such as TR 17 and ¥,=f(U;) where

J(U)) is a non-decreasing function.
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Figure 4. The generalized maximum neural network architecture: (a) processing element;
(») maximum selection function block; (c¢) the hardware structure for the module
orientation problem; (¢) maximum selection function block; (¢) the maximum neural
network for the module orientation problem.

Proof

dE_ZdUidl/i dE
dr 4 dr dU,dV,

i

duizdV, dE U,
B —Z(T) du; where av, s replaced by -~ (conditionl)

dv;
<0 where m> 0 (condition 2)
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Lemma 1 states that the state of the system finally reaches an equilibrium state.
The input/output function must follow a nondecreasing function. In Lemma 2, the
local minimum convergence of the generalized maximum neural network for the
module orientation problem is given.

Lemma 2
Es_O is satisfied under two conditions such as
du,, JoE
§)) Pt ——anand

2y Vi =1 iff(Uy )=max {f(Upn 1), f(Un 2): f(Um 3) f(Up )}
0 otherwise

where f is a non-decreasing function.

Proof
Consider the derivatives of the computational energy E with respect to time t.

dE_zsz.,.,.- dVa, df(Un.;) OE
4 &4 dr df(U,,,) dU,, V.,

dU, \* dV,; df(U,; E
= —ZZ( m") ri YUn) where is replaced by
m i

d¢ df(U,. ) dU,., ov,.;

= (condition 1)

dt
d¥,; Vo i(t-+dD)— ¥, (1) df(Un.)
M. i . b
Lt Fu.) ™ f[U,..a,-(tert)] —f[t!m.;(r)] L°)‘ v, ©
S (U 4+ A0]~f (U, (0] Upi, Unt+d0—U, .
U, (+an— U,,,,,(t) . Let a be T . Let us consider the

2 .
dU’"") Vi YWUn) for each module separately. Let U, ,(t+dr)} be

term ;( &t ) I, dU,,
the maximum at time ¢+dr and U, ,(#) be the maximum at time ¢ for the input of
the module m. Because the function f is a non-decreasing function, f(U,, .(z+d7)]
and f[U,, ,(1)] are the maximum at ¢+dr and at 7 respectively.

U (t+d=max {U,, ((t-+d1), U, ,(t+d1), U, 3(t+d2), U, 4(2+dD)},

Um.b(l) =max {(Um. 1(1)! Um.Z(t)s Um. 3 (t), Um,4(t)}1
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S[Un(t+d0j=max { f[Up, (1+dD)], f[Upn 2 (t+dD)], f[U,,,5(1+dD)],
X f[Up,4(t+dD]},
SWapO]=max {f{Up )], fUp,2(0) SUn 30}, f1Un 4 (0]}

It is necessary and sufficient to consider the following two cases:

(1} a=b

Q) a#b

If the condition (1) is satisfied, then there is no state change for the module m.
Consequently,

dU,. A\*dV, ;
¥ (T) v, must be zero.

If (2) is satisfied, then

Z(dU,,,',')z de,i df(Um.i)

de df(UMI) dUm,i

i

[ Unalt4+dD)—Up o P Voot +d)— Vo oa(t)  [Unp(t+d)—Up ()
_[ ds ] Um,a(t+dt)_Um.a(t) [ de :I

Vm, b(l +d!) - Vm,b(t)
Up y{t+d0)— U, (1)

_|[Umalt+d)—Upn (1) |? 1 U p(t+d0) — U, ()]
‘[ dr ] U,,,‘a(t+dt)—U,,,_a(z)+|i dr ]

-1
U a(+d0— U, ()

_ Um‘a(t + dt) - Um.a(t) Um.b(l +dt) - Um‘b(t)
- (do)? B (dr)?

1

=(d—l)i [Um,a(t+ d') - Um,a(t)_ Um.b(t + dt)+ Um.b(t)]

1
=@n (Unm,olt+d0) = Uy (t+dD+ Uy y ()= U, 5(0]

>0
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because U, ,(t+dr) is the maximum at time ¢+dt and U, ,(f) is the maximum at
time 7 for the module m.
The contribution from each term is either 0 or positive, therefore

sU, N\ dV,.; dau, \? dV,; dE
;( ar ) au, >0 and ?Z( ds ) dau, S0=q <0

The generalized maximum neural network performs a parallel improvement
algorithm which can be implemented either on a sequential machine or on a parallel
machine. The solutien quality is always improved as time elapses until no further
improvement can be achieved. The termination condition is given by the conver-
gence state of the system. When the system reaches a stable point or an equilibrium
state, the execution is terminated. The equilibrium state is reached when all firing
neurons have the smallest change rate of the input per cluster. The condition of the
equilibrium state is given by:

dUm.i(l) — min {d Um. 1 (t) dUm. 2 (l) dm. 3(1) dUm,4(I)} fOl' m

Vi()=1 and dt de ° dr ' dr °  dt

=1,...,. M

Note that none of the existing Hopfield neural networks clearly define the condition
of the system convergence.

6. Parallel algorithm and simulation results

The parallel algorithm based on the generalized maximum neural network is
implemented in C on Dec3100 and in Turbo Pascal on Macintosh SE/30. The
following procedure describes the proposed parallel algorithm based on the first
order Euler method.

Step0. Set =0
Step 1. for m=1to M do
for i=1 to 4 do in parallel
U, :()—Random number € (—1, 1)
Step 2. for m=1to M do
for i=1 to 4 do in parallel
Vm,r'(t)=1 ]f f[Um.i(t)]=max {f[Um,l(l)]s f[Um.Z(l)]’ f[Um,B(t)]s
STUn, o1}
0 otherwise
Step 3. for m=1 to M do
for i=1 to 4 do in parallel
M 4
AU, (N=-3Y ¥ Ly
. m#Emj=1
Step4. for m=1to M do
for i=1 to 4 do in parallel
Up. it +1)=Uy () + AU, i(1)
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Step 5. Increment f by 1.

Step 6. 1f the state of the system reaches an equilibrium state then stop else go to
Step 2.

In the proposed parallel alogorithm, the initial state is randomly generated for
the input of each processing element at step 1. At step 2, the output of each
processing element is evaluated according to the generalized maximum function. The
equation of motion in (10) determines the change for each input of the processing
elemets at step 3. The new state of each input is updated by the first-order Euler
method at step 4. We have examined our algorithm using more than one thousand
examples including up to 300-module problems. The simulation results for the
module orientation problem based on the Libeskind-Hadas and Liku’s method, the
maximum neural network, and the generalized neural network are shown in Table 1
where 1 denotes the gain of the sigmoid function. Each element except the last
column in Table 1 is represented by the average value and standard deviation of 100
simulation runs. In this paper the sigmoid function is used in the generalized
maximum function. The last column represents the best solutions found by the
Libeskind-Hadas and Liu’s method. Originally, Yamada and Liu tested six optimi-
zation methods for the module orientation problem and found that the simulated
annealing method provides the best performance among the six methods. Libeskind-
Hadas and Liu have tested the module orientation problem based on the neural
network using problems up to 96 modules. Their solutions are generally better than
those found by Yamada and Liu’s simulated annealing algorithm. However, the
performance of the maximum neural network and the generalized maximum neural
network is far better than that of Libeskind-Hadas and Liu in terms of the solution
quality and the computation time. Note that the number of convergence steps in the
Libeskind-Hadas and Liu system is in the order of several thousand. However, the
maximum neural network and the generalized maximum neural network converge
within 100 iteration steps. The other distinguished characteristics lies in that the
percentage of the obtained valid solutions for Libeskind-Hadas and Liu’s system is
averagely below 15%.

Figure 5(a) shows the initial configuration of the 4-module problem, and the
final result based on the maximum neural network is shown in Fig. 5(b). For four-
module to 14-module problems, we were able to verify the optimality of our
algorithm by exhaustive search. The searching complexity for 14 modules is
4'4(~10%) where it took 15h to find the global minimum on a Macintosh SE/30
machine. One hundred simulation runs were performed for each instance where the
initial state of the system is randomly generated for every simulation run. The
simulation results are shown in Table 2.

The propesed algorithm always finds the global minimum or near-optimum with
several ten iteration steps. Figure 6{(a@) to Fig. 6 (g) shows the initial state and the
converged state of the system for four-module through ten-module problems
respectively. Figure 7(a), Fig. 8 (@), and Fig. 9(a) show the initial state and the
converged state of the system for the 100-module, 200-module, and 300-module
problem respectively. The relation between the energy and iteration steps for 100-
module, 200-module, and 300-module problem arc also shown in Fig. 7(b), Fig.
8(b), and Fig. 9 (b) respectively. The energy represents the total wire length.
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Figure 5. 4-module problem: (a) initial configuration of the testing example; (b) final
solution.
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Figures 6(a) & 6(b). Module orientation problems with module size 4 and 5. The left picture
and the right picture describe the initial configuration and the final converged solution,
respectively.
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Figures 6(c) & 6(d). Module orientation problems with module size 6 and 7. The left picture
and the right picture describe the initial configuration and the final converged solution,
respectively.



Downloaded by [University of Sussex Library] at 06:36 17 January 2015

Generalized neural network 347

Energy = 1971

\

™
b

EJ/K/

N

Energy = 1584

(e) Module size §.

ey

va%i

Energy = 2526

2
L

(f) Module size 9.

r

Energy = 2349

Figures 6(e) & 6(f). Module crientation problems with module size 8 and 9. The left picture
and the right picture describe the initial configuration and the final converged selution

respectively.
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Figure 6(g). Module orientation problems with module size 10. The left picture and the right
picture describe the initial configuration and the final converged solution respectively.
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Figure 7. 100-module orientation problem: (a) initial state with the total length 35955-4;
(b) final solution with the total length 34109-3; (¢) the relationship between the energy
and the number of iteration steps for the module size 100.
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Figure 8. 200-module orientation problem: (a) initial state with the total length 67919-9;
(b) final solution with the total length 64711-2; (¢) the relationship between the energy
and the number of iteration steps for the module size 200.
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Figure 9. 300-module orientation problem: (a) imtial state with the total length 109748-3;
(&) Final solution with the total length 106442-4; (c) the relationship between the
energy and the number of iteration steps for the module size 300.
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7. Conclusion

In this paper a generalized maximum neural network for parallel computing is
proposed and the module orientation problem is used to test the capability of the
artificial neural network. The circuit diagrams of the generalized maximum neural
network and the maximum neural network are also presented and compared with
that of the Liu’s Hopfield neural network. The simulation results for the proposed
system are quire encouraging. As Yu (1989) pointed out, the artificial neural
network cannot work well if the original Hopfield neural network is used. However,
it does not mean that the artificial neural network approach is not suitable for VLSI/
CAD problems. As long as the proper neural model and the proper representation
are used, the artificial neural network gives a better solution than the best known
algorithms, Future research will focus upon finding a proper representation and
processing element model for other CAD problems.
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