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Fuzzy inference engines based on the existing fuzzy theory 
are inadequate to perform reliable decision making. Be- 
sides requiring the fuzzy sets and data to be normalized, 
the inference engine is also sensitive to noise in 
observational data. Inaccurate conclusions are produced 
if noise is present and also when the fuzzy sets are not 
normalized. In this paper, a new term "similarity' (o) 
and the method to compute o to enhance the capability 
of  fuzzy set theory for application in expert systems is 
introduced. Even though the complexity of the hardware 
engine is slightly increased, it actually reduces the over- 
head of computation by eliminating the need for normali- 
zation of fuzzy data. With reliable fuzzy data 
manipulation, it is easy to extend to a multi-dimensional 
membership function which has a wider scope of applica- 
tions. To implement the Very Large Scale Integration 

fuzzy inference engine, two general schemes of the hard- 
ware architecture that can be easily reconfigured to satisfy 
given performance requirements are discussed. 

Keywords: fuzzy computation, fuzzy inference engines, 
fuzzy expert systems 

Human possesses several distinguished reasoning mecha- 
nisms which non-human does not have. Most of these 
reasoning processes are still not well understood by 
researchers or scientists. A few of the reasoning mecha- 
nisms have been studied and practically applied to real 
world problems. Inference is a kind of mechanism in 
reasoning - -  reasoning can be classified into three cate- 
gories: exact reasoning; fuzzy reasoning; and a combina- 
tion of the two. In exact reasoning there is no ambiguity 
at all in expressions, e.g. 'John has a wife; her name 
is Nancy; John's wife is pregnant'. An expression in 
exact reasoning is either an inference rule or a fact. 
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In this example, there are two facts and one rule; 

FACTS: wife(John) and is pregnant(wife(John)) 
RULE:EQUAL(wife(John), Nancy) 

From these two facts and one rule, we can conclude 
that Nancy is pregnant: is pregnant(Nancy). In fuzzy 
reasoning, an expression contains fuzzy meaning, e.g. 
'if x is a very heavy man then x is not suitable to be 
a jockey'. Note that there is a fuzzy term 'very heavy'. 
In fuzzy reasoning we have to deal with fuzzy terms 
to solve problems. To perform an intelligent job, human 
knowledge can be represented or described by knowledge 
expressions. However, it is very hard or impossible for 
us to describe the entire domain of human knowledge 
even by current high technologies. Thus, each of the 
existing inference systems must have knowledge informa- 
tion in a very narrow domain so that it becomes feasible 
to store and manipulate a finite number of inference 
rules and facts in memory elements such as hard discs, 
floppy discs, or semiconductor memory chips to manage 
the knowledge expressions for a specific application. The 
so called 'inference engine' is a knowledge manipulation 
system to deal with some specific inference problems. 

Inference engines can be classified into the following 
categories: Synchronous Line Driver (SLD) inference en- 
gines such as Prolog machines (so called fifth generation 
computers in Japanl-a); resolution-base machines such 
as Interactive Theorem Prover (ITP) at Argonne Natio- 
nal Laboratory in Illinois4; fuzzy inference engines at 
AT&TS; paramodulation inference engines at the 
University of South Carolina6; and abduction engines. 

Here, the focus is initially on the theory of fuzzy sets. 
Then a new fuzzy inference computation scheme and 
its inference engine as expert system is introduced. We 
have been developing the prototype of the inference en- 
gine based on our improved fuzzy inferencing scheme, 
thus eliminating the significant drawbacks of the existing 
fuzzy computation algorithms. The new fuzzy inference 
computation is suitable for complex inference rule ex- 
pressions and multi-dimensional membership functions. 
(A brief explanation of the terminology used in the repre- 
sentation of fuzzy inference rules is provided below.) 
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The main applications of fuzzy logic lies in economics, 
management science, Artificial Intelligence (AI), psy- 
chology, linguistics, information retrieval, medicine, bi- 
ology, chemistry, system controls, and other fields. A 
brief theory of fuzzy logic in expert systems is presented 
here. 

Consider the following sentence: 'he is a very tall man.' 
We do not know exactly how tall he is. He might be 
6'5", 6'8", or more than 7 feet in height. If a given 
sentence contains ambiguity or fuzzy meaning, then we 
must know what the attribute is associated with the fuzzy 
term in order to process fuzzy expressions. In this sen- 
tence, 'very tall' is a fuzzy term, and this fuzziness is 
associated with the attribute 'height'. In general, a 
linguistic variable is used to express fuzzy attributes, 
e.g. since the terms very short, short, not tall, tall, and 
very very tall are values of attribute height, then height 
must be a linguistic variable. Once we have determined 
the attribute associated with the fuzzy expression, the 
attribute can be quantized. There are objections against 
quantization of fuzzy attributes among some 
researchers. Their claims are that fuzzy attributes cannot 
be quantized - -  doing so would suggest that they are 
not fuzzy any more. Despite such claims, fuzzy theory 
strongly supports the quantization of fuzzy attributesS'L 

The use of fuzzy expressions to represent domain- 
specific human knowledge can be described by fuzzy 
conditional statements. Fuzzy conditional statements are 
expressions of the form ' i f  A then B' where A and B 
have fuzzy meaning, e.g. 'if temperature in the room 
is too hot then turn the thermostat to low' is a fuzzy 
conditional statement. The A part is called the antece- 
dent while the B part is called the action or conclusion. 
The antedecent part is compared with the fuzzy observa- 
tion input (the fuzzy observation input is explained be- 
low). If matching between the antecedent part of the 
fuzzy set and the observation input is perfect then 100% 
of the action part is generated as fuzzy output. If match- 
ing is X%, then X percent of the action part is generated 
as fuzzy output. 

Before fuzzy expressions can be processed based on 
fuzzy computation, a formal representation of linguistic 
variables in terms of fuzzy sets is required. Fuzzy set 
can be characterized by members and a membership 
function. Members in membership and the membership 
function play an important role in the quantization of 
fuzzy attributes. Members lie in a range of attribute 
domains. The membership function is a probability func- 
tion or a grade function, e.g. if the attribute is age, 
a member of membership AGE is an element in a set 
of values {0,1,2 . . . .  150} (note that member 0 means 0 
years old and 150 means 150 years old). The membership 
function AGE(x), where x is a member of membership 
AGE, expresses the grade of membership of x in AGE. 
The membership function AGE(x) usually lies in the 
interval [0,1] (note that AGE(x) = 0 means 0% probabil- 
ity, and AGE(x) = 1 denotes 100% probability). 

Some examples of members and membership func- 
tions are shown in Figure 1. Consider the attribute 'age'. 
Fuzzy sets of various linguistic terms (young, old, very 
young, not young and very old) can be expressed as 
membership functions (shown in Figures la, b, c, d and 
e respectively). 

In fuzzy reasoning, fuzzy conditional statements are 

I eeee ° Young 
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0 50 I00 
a Age:x 

i---"-- 'I': Old Very young 

01 ~ ~  
__0 50 100 0 50 100 
D Age: x C Age:x 

I Very oldoo ~ I ? ~  

0 ~ O~ 

d 0 50 I00 0 50 I00 
Age: x e Age : x 

Figure 1. Membership function examples. (a) Young(x), 
(b) Old(x), (c) Very young(x), (at) Very old(x), 
and (e) Not young(x) 

incorporated into the knowledge base as rules in the 
following form: 

Rulel: if A1 then B~, 
Rule2: else if A 2 then B 2 

RuleN: else if A N then Bs 

e.g. suppose that you are a teacher giving advice to 
a student who sat for an examination. Let x be a score 
of the student. An example of the compositional rules 
of inference is: 

Rulel: if x is very low then tell him to study very 
very hard; 
Rule2: else if x is low then tell him to study very 
hard; 
Rule3: else if x is not high then tell him to study 
hard; 
Rule4: else if x is not low then tell him to study; 
Rule5: else if x is high then tell him to keep on 
studying; 
Rule6: else if x is very high then ask him to teach 
in his class. 

Note that each of the antecedent parts such as 'x is 
low' is compared with fuzzy observation input. Remem- 
ber that fuzzy observation input is not an exact number, 
but a fuzzy set. Depending on a given fuzzy observation 
input, we can generate a fuzzy output by incorporating 
each of the action parts in rules such as 'tell him to 
study very hard'. Each of the action parts is a component 
of the final fuzzy output to be produced by an inference 
engine. Comparing the magnitude between a fuzzy ob- 
servation input and the fuzzy set representing the antece- 
dent determines what percentage of the action part in 
a particular rule is used for the final fuzzy output, e.g. 
if fuzzy observation input is an expression containing 
'x is not low but not high', then a high percentage of 
Rule3 and Rule4 are activated to generate the final fuzzy 
output. This is because the observation input hits the 
highest matching magnitude of Rule3 and Rule4. Of 
course, Rules l, 2, 5, and 6 contribute a little to the 
output too. 

In fact, the computation of fuzzy conditional state- 
ments described above is based on very simple minimum 
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Figure 2. Resolution of membership grades. (a) Antece- 
dent A, (b) Action B, (c) Observation A', (d) Computed 
~, ( e ) Final output 

and maximum functions. The min function 'min(x,y)' 
chooses the minimum value in x and y, e.g. min(5,9) 
returns 5. The max(5,9,7) returns the maximum value 
9 among 5, 9, and 7. (Details of the fuzzy computation 
using min and max functions are explained below.) 

Before describing the details of the mechanism of 
fuzzy computation, the resolution of the grades of mem- 
bership and the resolution of membership must first be 
determined. The so called resolution of probability and 
the number of members in membership are decided 
based on applications, e.g. if we use four bits for express- 
ing probability, we will have 16 levels in grade (24 = 
16) (level starts from 0th to 15th grade in this case). 
If we use 18 members for membership, a total of 18 x 4 
bits of memory cells are required to represent one fuzzy 
set. 

Consider an example with a single rule: if x = A 
then y = B where A and B have 8 x 2 resolution (note 
that A and B have four levels of probability and eight 
members for membership). Inferring from a single rule 
is based on computation of the value of a: 

a = max(min(p(i) of A, p(i) of A' )) 

where p(i) is the probability of the ith member of mem- 
bership. The value of a corresponds to the degree of 
matching between the fuzzy observation input and the 
antecedent part mentioned previously (note that i is in 
the range from 1 to 8). Level-0, level-l, level-2 and level-3 
in grade correspond to 0%, 33%, 66% and 100% in 
probability respectively, and is represented graphically 
by the vertical axis. The final fuzzy output due to this 
single rule will be given by the equation: 

fuzzy output = min(a, p(i) of B) where i is from 
1 to8. 

Consider the following illustration, where A and B are 
as shown in Figure 2a and b respectively. Suppose a 
fuzzy observation input A' (shown in Figure 2c) is pro- 
vided. Then min computation between A and A' is given 
by min(p(i) of A, p(i) of A'), and will result in the fuzzy 
set shown in Figure 2d. The value of a in this case 
corresponds to the first level from the operation of 
max(0,0,0,0,1,1,0,0) = 1. The final fuzzy output is given 
by min(a,p(i) of B) (shown in Figure 2e). 

As mentioned earlier, rules of inference are generally 
of the form: 

Rule I: if A 1 then B 1 
Rule2: else if A 2 then B 2 

RuleN: else if AN then BN 

Given the above rules, the fuzzy inference computation 
is given by the following algorithm: 

1 For each of the rules (Rulel through RuleN), com- 
pute a for the jth rule which is given by max(min(p(i) 
of A], p(i) of A')) where Aj is the jth rule and A' 
is an observation input. The fuzzy output Bj" is given 
by min(a ofjth rule, p(i) of Bj) where B/is the action 
part of the jth rule. The value of j is in the range 
of 1 to N. 

2 Compute max(p(i) of B '  1 through BN'). 

From the above illustration we can conclude that it is 
fairly straightforward to process a given set of fuzzy 
inference rules based on the existing inferencing algor- 
ithm. 

NEW F U Z Z Y  C O M P U T A T I O N  

To overcome the significant drawbacks in the algorithm 
described above, a new fuzzy computation scheme is 
introduced, although it slightly increases the complexity 
of computations for fuzzy processing (details of the 
drawbacks in the existing fuzzy computation scheme are 
described below). With the new computation scheme 
put forth, fuzzy expressions are easily expandable to 
multi-dimensional membership functions for more fruit- 
ful fuzzy expressions, while the existing fuzzy theory 
is based on one dimensional membership functions so 
that applications are limited. Also, architectures of fuzzy 
inference engines based on the new fuzzy scheme are 
proposed. The proposed fuzzy inference engine is recon- 
figurable depending on given fuzzy expressions or com- 
positional rules of inference. In this sense, the engine 
has wider scope of applications. The proposed Very 
Large Scale Integration (VLSI) fuzzy inference engine 
is expected to be very powerful as a real-time expert 
system. The engine will have several Million Fuzzy Logic 
Inferences Per Second (MFLIPS) computation capabil- 
ity, thus the research on the new fuzzy inference engine 
is worthwhile, as well as indispensable, for real-time rea- 
soning in some AI applications. 

Conventional  reasoning algorithm drawbacks 

To understand the drawbacks in the conventional rea- 
soning scheme, consider a single inference rule: 'if x 
= A t h e n y =  B. 

Suppose: 

n = { x . x =  . . . .  ,X,o},  

u(x) = [oJ] ,  

A = 0.1/3 + 0.2/4 + 0.3/5 + 0.2/6 + 0.1/7, 

B = {Yl,Y2 . . . .  ,Ylo}, 
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Figure 3. Fuzzy matching with the presence of noise, coo." 
observation data," ***." antecedent data 

u(y) = [0,1], 
B = 0 .1 /3+0 .2 /4+0 .3 /5+0 .2 /6+0 .1 /7"  

If the observation input x is A' where: 

A' = 0.1/3 +0 .2 /4+0 .3 /5+0 .2 /6+0 .1 /7  

then the result of  a will be 0.3 based on the conventional 
reasoning scheme. This is because a as given by the 
equation: 

a = max(min(uA(xi), uA'(xi))) where i = 1 . . . . .  10 

becomes 0.3. This a should be 1.0 instead of  0.3 because 
the observation input A' and the antecedent A are exactly 
the same, i.e. the condition in 'x = A' is perfectly 
matched with the observation input A', which means 
that the conclusion 'y = B' should be 100% activated. 
To avoid such problems in the conventional reasoning 
scheme, the observation fuzzy input A' and the antece- 
dent fuzzy set A' must always be normalized to 1 where 
the computation of normalizations can be very expen- 
sive. Otherwise, it is simply prohibited to use such unnor- 
malized fuzzy sets. 

The other significant drawback lies in noise tolerancy. 
If a fuzzy observation input contains unfiltered noise 
data, the value of  ~ can be incorrectly computed by 
the presence of  a single noise data. Referring to the 
case shown in Figure 3, where the shaded regions of  
'***' and ' co '  represent the antecedent and observation 
data respectively, the value of  a computed will be equal 
to 1. The correct a should be close to 0. 

New fuzzy reasoning scheme 

To introduce the new fuzzy computation algorithm we 
have to first define an important term, 'similarity', which 
is denoted by o. Simlarity is a measure of  resemblance 
between two fuzzy sets. The magnitude of o is between 
zero and unity. Consider the inference rule 'if x = A] 
then y = B~'. Let A' be an observation fuzzy input 
and B' be the final fuzzy output. Similarity o between 
A' and A~ is applied to obtain uB' where: 

uB' = cr x uBl(yi) for• = 1 . . . . .  M 

The similarity between A' and A ~ can be computed from 
the following equations: 

*The first equation denotes that there are ten members in the member- 
ship; the second equation implies that probability is in a range of 
0 to 1; in the third equation, 0.1/3 (grade/member) means that the 
probability of member 3 is 0. !. For members not specified, a descrip- 
tion of 0/member is assumed for simplicity. 

AI * A' 
o o o  * * * * *  

o e e o o o  * * * * * * *  

eq-,~oooqmmmm.. .. . 
NoNuelammiaa.. ***** . 0 l l I l i l i l l I l l  

Attribute b Attribute 

O- 

It  

Figure 4. (a) Matching of the if part 'uA1 (xi)'  and 
'uA'(xi) ". ooo," A1; ***: A', • • • :  difference dbetween 

fuzzy set A a and A', (b) Activation of  the then part of 
'uB1 (Yi) ' of  the rule. • • • :  difference d 

o ,  

d = 
M 

Z 
i = 1  

[max( uA l ( Xi),uA' ( xi) ) - min( uA l ( xi), uA" ( xi) ) ] 

M 

a = ~ UAl(X~) 
i = 1  

M 

a'= ~, uA'(xi) 
i = I  

To better understand the above equations, refer to Fig- 
ure 4a and b. The shaded areas ( ' ee '  and '**') in Figure 
4a are the difference d between the fuzzy set A1 and 
the observation input A'. The difference d corresponds 
to the result of an exclusive-OR operation in set theory. 
Thus, the relative difference is given by d/(al + a'), where 
aa and a' are EuAl(x~) and EuA'(x~) respectively. The 
significant advantage of  the proposed fuzzy scheme lies 
in the fact that all the fuzzy sets used such as A', A1 
and B~ are not necessarily normalized, while all the fuzzy 
sets in conventional fuzzy theory have to be normalized 
to 1. Remember that A~, A' and B~ sets in Figure 4a 
and b are not acceptable by the conventional theory, 
since they are not normalized. The second advantage 
of similarity lies in the fact that similarity computation 
can eliminate the undesired noise data effects (discussed 
above - -  see Figure 3). 

Consider the following set of  inference rules: 

Rule#l:  if A 1 then B1 
Rule~2: else if A 2 t h e n  B 2 

Rule#3: else if Aa then B a 

Rule#N: else if Au then Bu 

Given an observation data A', the following equations 
can be used to infer from the rules above: 

crj is the similarity in the jth rule between Aj and A'. 

c j = [ 1 - ( a j d i a , ) l  

M 

= ~ [max(uAj(x,), uA'(x~)) - min(uAj(x,), 
~= j uA'(xi))] (where M is the number of  

members). 
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M 

aj= E ua,(x,) 
= 1  

M 

a'= E uA'(x,) 
= 1  

u (r)=6j x uS,<r) 

uB" = max(uBf(Y)) forj  = 1, . . . ,  N 

To understand complex expressions, consider the follow- 
ing set of rules: 

Rule#l:  i f (w = At and x - B t )  or y = C1 then z = Dx, 

Rule#2: d s e i f  w = A 2 or x = B z or y = C2 then z = D2, 

Rule#3: else if w -~ A3 and  x = B3 and y = C3 then z = D 3. 

6~x is similarity of  A, and A'  in the ith rule. 
aj2 is similarity o f  B~ and  B' in the ith rule. 
6~3 is similarity of  (7,. and C in the ith rule. 

For ru le# l ,  u l ~  -- m a x ( m i n ( a H , 6 1 2 ) , 6  t3) x uD1 

For rule#2, uD~ - ~  ma, x(G21,ff22,623 ) × uD 2 
For rule#3, uD~ = min(G31,o'32,G33) X uD 3 

The final uD" will be given by: 

uD' = max(uDl', uD~, uD~) 

Note that the and and or operators in the antecedent 
of complex expressions do not require any special addi- 
tional hardware to be implemented. The and and or 
operators correspond to rain and max operations respec- 
tively, therefore expressions of arbitrary complexity can 
be modified to equivalent expressions with just and and 
or logical operators, which in turn can be realized in 
hardware with the basic min and max modules. 

R E A S O N I N G  I N V O L V I N G  M U L T I -  
D I M E N S I O N A L  M E M B E R S H I P  F U N C T I O N  

The conventional fuzzy theory contstrains users to use 
only a one-dimensional membership function. The con- 
straint was not significant in linguistic applications, but 
general fuzzy inference applications have to deal with 
more sophisticated membership functions. In many prac- 
tical applications, two or more interdependent variables 
have to be monitored simultaneously to determine the 
final decision, e.g. when fuzzy inference rules are applied 
to pattern recognition, at least two-dimensional member- 
ship functions have to be used. To represent a two- 
dimensional membership function, two different attrib- 
utes and probability (membership function) have to be 
used, e.g. to express a small hill in Figure 5, the fuzzy 
set will be: 

u ( X , Y )  = u/x/y 
1/4/3+1/5/3+1/6/3+1/3/4+2/4/4+ 
3/5/4+2/6/4+1/7/4 
+1/3/5+3/4/5+4/5/5+3/6/5+1/7/5+ 
1/3/6+2/4/6+3/5/6 
+2/6/6+1/7/6+1/4/7+1/5/7+1/6/7 

whe~ u = ~ , 8 ] ,  X = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10} ,  a n d  Y = 
{1,2,3,4,5,6,7,8,9,10}. 

7 
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Figure 5. Two dimensional membership function 

Similarly, to represent a three-dimensional member- 
ship function, three different attributes and probability 
(membership function) have to be used. Thus, the mem- 
bership function u(X,Y,Z) can be applied to three- 
dimensional space problems. The complexity of the 
inference engine increases as the number of attributes 
increases. 

F U Z Z Y  I N F E R E N C E  E N G I N E  
A R C H I T E C T U R E S  

There are basically two types of architecture for sequen- 
tial inference engines: serial; and parallel. In serial sys- 
tems, each rule is processed independently one after 
another. The valid fuzzy output is obtained when all 
the inference rules have been processed. For parallel 
engines, all the rules are processed at the same time, 
and the final conclusion is produced by introducing a 
max operation on the conclusions of all the rules. The 
decision whether to use Random Access Memory 
(RAM) or Read Only Memory (ROM) to store the 
rules and whether to load the rules from within the 
chip or externally depends on the application and the 
availability of silicon space within the processor. Two 
alternative architectures for realizing fuzzy inference en- 
gines on hardware are described below. 

Serial e n g i n e  

Figure 6 shows the data path for a serial engine. The 
memory required for storing all the fuzzy sets can be 
located within the chip or it can be external to the chip. 
The fuzzy sets are repeatedly fed into the processor until 
all the rules have been applied. The advantage of such 
a system is its smaller area: this is particularly useful 
if we have a large number of rules for the expert system 
and the engine has to be small. The register labelled 
R e g _ A  in Figure 6 retains the value of similarity after 
the fuzzy set that represents the antecedent part of the 
rule has been processed. This value is denoted by o, 
as described before. A shift register with storage equal 
to the number of bits for one fuzzy set is needed to 
accumulate the activation of all the rules. Retrieving 
the valid output of the inference engine can be done 
after the last rule has been applied. Assuming that .a 
single chip consists of a single serial engine, it is easy 
to enhance the speed by using more than one chip. As 
shown in Figure 7 ,  if we have two fuzzy engines, each 
engine can process half the number of fuzzy sets. An 
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Figure 6. Serial engine. *." register," SR." shift register; 
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additional max operation is needed externally to com- 
pute the final decision. 

Based on the new computation scheme, a divider is 
required to perform division between two numbers. To 

INFERENCE 
ENGINE 

#1 

INFERENCE 
ENGINE 

# 2  

I I 
External 

MAX 

FUZZY 
OUTPUT 

Figure 7. Inference engine using two processors 

achieve this, a divider has been used that is composed 
of an adder, a magnitude comparator and a synchronous 
counter, e.g. if we have fuzzy sets with 8 levels of  grade 
and 16 members in the membership, we would need 
a 7-bit adder, 7-bit magnitude comparator and a 3-bit 
counter to implement the divider (note that accurate 
division is not necessary since the probability levels have 
been discretized to grade levels. This is analogous to 
performing a long division and discarding the remain- 
der). 

Two different reset signals are needed to synchronize 
the inference engine: the first reset signal resets the engine 
up to the point of Reg____A in Figure 7, i.e. after the 
value of o has been computed for each rule; a second 
global reset signal is needed to refresh the whole system 
prior to the start of a new fuzzy logic inference. 

Parallel engine 
An alternative to the serial architecture is the parallel 
engine. In this case, all the rules are processed in parallel, 
thus enhancing the speed. Figure 8 shows the data path 
of a single rule processor in a parallel engine. Since 
all the rules are processed at the same time, the shift 
register (shown in Figure 7) is not necessary in this case. 
The data path of Figure 8 is repeated as many times 
as the number of rules to be handled. Final output is 
then produced by a max operation which can either 
be external to, or locally within the chip. A global reset 
signal prepares the engine for each new fuzzy logic infer- 
ence. Even though this architecture consumes more sili- 
con area, it is generally faster and is suitable for real-time 
expert systems. To enhance the speed even further, each 
fuzzy set of  a rule can be subdivided into portions that 
are processed in parallel, e.g. to double the speed, two 
data paths of Figure 8 with an additional max operation 
will be used to process a single rule. For inference engines 
with too many rules, more than one chip can be used. 
As is the case with serial engines (see Figure 7), an 
external max operation is needed. The main limitations 
to the number of rules that can be realized on a single 
chip are the die area and the number of  input and output 
pins per chip. 
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R E C O N F I G U R A B L E  A R C H I T E C T U R E  F O R  
G E N E R A L  P U R P O S E  F U Z Z Y  P R O C E S S I N G  

The overall fuzzy inference engine can be implemented 
using a few basic modules: min and max modules are 
the most commonly used. A general purpose module 
which can perform both min and max operations with 
a mode input that determines the mode of operation 
(either min or max) can be used. However, in order 
to optimize designs, it is preferable to have specific 
modules that perform only min or max operation. Other 
modules that are also used are shift registers, counters, 
RAM and ROM. With the computation scheme de- 
scribed above, modules for performing addition and 
magnitude comparison are also required. 

A proper design environment requires the support of 
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I 
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X 

Figure 9 (A)  or (B) and C expression 

a good module library. For designing application-speci- 
fic VLSI systems, by limiting the domain of applications 
it is possible to create a design environment such that 
all the proper resources are available to support our 
design acivities. In the case of inference engines, the 
module library should as much as possible cover a com- 
plete range of modules that will be used like min, max 
and counters. Fortunately, from the standpoint of prac- 
ticality in real world applications, it is not necessary 
to have a big library with a huge number of modules. 
Other modules that are structurally regular like RAM, 
ROM and shift registers can be automatically generated. 

Depending on the expression in the inference rules, 
the architecture of the inference engine may have to 
be reconfigured. So far, the architecture described takes 
into account rules with single variable antecedent. When 
the antecedent contains more than one variable, such 
as 'x = A and y = B', 'x -- A or y = B', 'x = 
A or y = B and z = C', etc., we need to modify the 
existing inference engine to handle the multiple variables. 
As it turns out, the logical operators and and or corres- 
pond to min and max operation respectively. As shown 
in Figure 9, for an expression with antecedent of  the 
form '(x = A or y = B) and z = C', the output labelled 
X becomes the input instead of Ai in Figures 6 and 
8. 

C O N C L U S I O N  

A reliable approach to approximate reasoning in expert 
systems has been presented here. With this improvement, 
it is not necessary for the fuzzy data to be normalized, 
which is not the case in conventional fuzzy reasoning 
schemes. Using this improved scheme, the presence of 
noise does not affect the correctness of  the decision. 
This is achieved by computing the similarity factor o 
between two fuzzy sets. Similarity is a measure of 
resemblance between two fuzzy sets, and its value deter- 
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mines the level of activation of the conclusion part of 
each rule. The use of multi-dimensional membership 
fuzzy logic for certain real-time expert systems has also 
been introduced. To implement the fuzzy inference en- 
gine, two different architectures using essentially the 
same components were presented. The architectures de- 
scribed are also easily reconfigurable to handle complex 
fuzzy expressions for more fruitful real-time applica- 
tions. 
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