
Computation scheme for the
general purpose VLSI fuzzy

inference engine as expert system

Yoshiyasu Takefuji* and Meng-Hiot Limt

Fuzzy inference engines based on the existing fuzzy theory
are inadequate to perform reliable decision making. Be-
sides requiring the fuzzy sets and data to be normalized,
the inference engine is also sensitive to noise in
observational data. Inaccurate conclusions are produced
if noise is present and also when the fuzzy sets are not
normalized. In this paper, a new term "similarity' (o)
and the method to compute o to enhance the capability
of fuzzy set theory for application in expert systems is
introduced. Even though the complexity of the hardware
engine is slightly increased, it actually reduces the over-
head of computation by eliminating the need for normali-
zation of fuzzy data. With reliable fuzzy data
manipulation, it is easy to extend to a multi-dimensional
membership function which has a wider scope of applica-
tions. To implement the Very Large Scale Integration

fuzzy inference engine, two general schemes of the hard-
ware architecture that can be easily reconfigured to satisfy
given performance requirements are discussed.

Keywords: fuzzy computation, fuzzy inference engines,
fuzzy expert systems

Human possesses several distinguished reasoning mecha-
nisms which non-human does not have. Most of these
reasoning processes are still not well understood by
researchers or scientists. A few of the reasoning mecha-
nisms have been studied and practically applied to real
world problems. Inference is a kind of mechanism in
reasoning - - reasoning can be classified into three cate-
gories: exact reasoning; fuzzy reasoning; and a combina-
tion of the two. In exact reasoning there is no ambiguity
at all in expressions, e.g. 'John has a wife; her name
is Nancy; John's wife is pregnant'. An expression in
exact reasoning is either an inference rule or a fact.

*Department of Electrical Engineering, Case Western Reserve Univer-
sity, Cleveland, OH 44106, USA
1"School of Electrical and Electronic Engineering, Nanyang Techno-
logical Institute, Singapore 2263

Paper received 7 April 1988. Accepted 5 January 1989

0950-7051/89/020109-08 $03.00 © 1989
Vol 2 No 2 June 1989

In this example, there are two facts and one rule;

FACTS: wife(John) and is pregnant(wife(John))
RULE:EQUAL(wife(John), Nancy)

From these two facts and one rule, we can conclude
that Nancy is pregnant: is pregnant(Nancy). In fuzzy
reasoning, an expression contains fuzzy meaning, e.g.
'if x is a very heavy man then x is not suitable to be
a jockey'. Note that there is a fuzzy term 'very heavy'.
In fuzzy reasoning we have to deal with fuzzy terms
to solve problems. To perform an intelligent job, human
knowledge can be represented or described by knowledge
expressions. However, it is very hard or impossible for
us to describe the entire domain of human knowledge
even by current high technologies. Thus, each of the
existing inference systems must have knowledge informa-
tion in a very narrow domain so that it becomes feasible
to store and manipulate a finite number of inference
rules and facts in memory elements such as hard discs,
floppy discs, or semiconductor memory chips to manage
the knowledge expressions for a specific application. The
so called 'inference engine' is a knowledge manipulation
system to deal with some specific inference problems.

Inference engines can be classified into the following
categories: Synchronous Line Driver (SLD) inference en-
gines such as Prolog machines (so called fifth generation
computers in Japanl-a); resolution-base machines such
as Interactive Theorem Prover (ITP) at Argonne Natio-
nal Laboratory in Illinois4; fuzzy inference engines at
AT&TS; paramodulation inference engines at the
University of South Carolina6; and abduction engines.

Here, the focus is initially on the theory of fuzzy sets.
Then a new fuzzy inference computation scheme and
its inference engine as expert system is introduced. We
have been developing the prototype of the inference en-
gine based on our improved fuzzy inferencing scheme,
thus eliminating the significant drawbacks of the existing
fuzzy computation algorithms. The new fuzzy inference
computation is suitable for complex inference rule ex-
pressions and multi-dimensional membership functions.
(A brief explanation of the terminology used in the repre-
sentation of fuzzy inference rules is provided below.)

Butterworth & Co (Publishers) Ltd
109

F U Z Z Y SET THEO RY 7

The main applications of fuzzy logic lies in economics,
management science, Artificial Intelligence (AI), psy-
chology, linguistics, information retrieval, medicine, bi-
ology, chemistry, system controls, and other fields. A
brief theory of fuzzy logic in expert systems is presented
here.

Consider the following sentence: 'he is a very tall man.'
We do not know exactly how tall he is. He might be
6'5", 6'8", or more than 7 feet in height. If a given
sentence contains ambiguity or fuzzy meaning, then we
must know what the attribute is associated with the fuzzy
term in order to process fuzzy expressions. In this sen-
tence, 'very tall' is a fuzzy term, and this fuzziness is
associated with the attribute 'height'. In general, a
linguistic variable is used to express fuzzy attributes,
e.g. since the terms very short, short, not tall, tall, and
very very tall are values of attribute height, then height
must be a linguistic variable. Once we have determined
the attribute associated with the fuzzy expression, the
attribute can be quantized. There are objections against
quantization of fuzzy attributes among some
researchers. Their claims are that fuzzy attributes cannot
be quantized - - doing so would suggest that they are
not fuzzy any more. Despite such claims, fuzzy theory
strongly supports the quantization of fuzzy attributesS'L

The use of fuzzy expressions to represent domain-
specific human knowledge can be described by fuzzy
conditional statements. Fuzzy conditional statements are
expressions of the form ' i f A then B' where A and B
have fuzzy meaning, e.g. 'if temperature in the room
is too hot then turn the thermostat to low' is a fuzzy
conditional statement. The A part is called the antece-
dent while the B part is called the action or conclusion.
The antedecent part is compared with the fuzzy observa-
tion input (the fuzzy observation input is explained be-
low). If matching between the antecedent part of the
fuzzy set and the observation input is perfect then 100%
of the action part is generated as fuzzy output. If match-
ing is X%, then X percent of the action part is generated
as fuzzy output.

Before fuzzy expressions can be processed based on
fuzzy computation, a formal representation of linguistic
variables in terms of fuzzy sets is required. Fuzzy set
can be characterized by members and a membership
function. Members in membership and the membership
function play an important role in the quantization of
fuzzy attributes. Members lie in a range of attribute
domains. The membership function is a probability func-
tion or a grade function, e.g. if the attribute is age,
a member of membership AGE is an element in a set
of values {0,1,2 150} (note that member 0 means 0
years old and 150 means 150 years old). The membership
function AGE(x), where x is a member of membership
AGE, expresses the grade of membership of x in AGE.
The membership function AGE(x) usually lies in the
interval [0,1] (note that AGE(x) = 0 means 0% probabil-
ity, and AGE(x) = 1 denotes 100% probability).

Some examples of members and membership func-
tions are shown in Figure 1. Consider the attribute 'age'.
Fuzzy sets of various linguistic terms (young, old, very
young, not young and very old) can be expressed as
membership functions (shown in Figures la, b, c, d and
e respectively).

In fuzzy reasoning, fuzzy conditional statements are

I eeee ° Young

0

0 50 I00
a Age:x

i---"-- 'I': Old Very young

01 ~ ~
__0 50 100 0 50 100
D Age: x C Age:x

I Very oldoo ~ I ? ~

0 ~ O~

d 0 50 I00 0 50 I00
Age: x e Age : x

Figure 1. Membership function examples. (a) Young(x),
(b) Old(x), (c) Very young(x), (at) Very old(x),
and (e) Not young(x)

incorporated into the knowledge base as rules in the
following form:

Rulel: if A1 then B~,
Rule2: else if A 2 then B 2

RuleN: else if A N then Bs

e.g. suppose that you are a teacher giving advice to
a student who sat for an examination. Let x be a score
of the student. An example of the compositional rules
of inference is:

Rulel: if x is very low then tell him to study very
very hard;
Rule2: else if x is low then tell him to study very
hard;
Rule3: else if x is not high then tell him to study
hard;
Rule4: else if x is not low then tell him to study;
Rule5: else if x is high then tell him to keep on
studying;
Rule6: else if x is very high then ask him to teach
in his class.

Note that each of the antecedent parts such as 'x is
low' is compared with fuzzy observation input. Remem-
ber that fuzzy observation input is not an exact number,
but a fuzzy set. Depending on a given fuzzy observation
input, we can generate a fuzzy output by incorporating
each of the action parts in rules such as 'tell him to
study very hard'. Each of the action parts is a component
of the final fuzzy output to be produced by an inference
engine. Comparing the magnitude between a fuzzy ob-
servation input and the fuzzy set representing the antece-
dent determines what percentage of the action part in
a particular rule is used for the final fuzzy output, e.g.
if fuzzy observation input is an expression containing
'x is not low but not high', then a high percentage of
Rule3 and Rule4 are activated to generate the final fuzzy
output. This is because the observation input hits the
highest matching magnitude of Rule3 and Rule4. Of
course, Rules l, 2, 5, and 6 contribute a little to the
output too.

In fact, the computation of fuzzy conditional state-
ments described above is based on very simple minimum

110 Knowledge-Based Systems

a

3 • •
2 g o • o o

~ O • • •

12345678 12345678 12345678
Membership b Membership C Membership

d

31
O e l e o e l e e l s

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Membership e Membership

Figure 2. Resolution of membership grades. (a) Antece-
dent A, (b) Action B, (c) Observation A', (d) Computed
~, (e) Final output

and maximum functions. The min function 'min(x,y)'
chooses the minimum value in x and y, e.g. min(5,9)
returns 5. The max(5,9,7) returns the maximum value
9 among 5, 9, and 7. (Details of the fuzzy computation
using min and max functions are explained below.)

Before describing the details of the mechanism of
fuzzy computation, the resolution of the grades of mem-
bership and the resolution of membership must first be
determined. The so called resolution of probability and
the number of members in membership are decided
based on applications, e.g. if we use four bits for express-
ing probability, we will have 16 levels in grade (24 =
16) (level starts from 0th to 15th grade in this case).
If we use 18 members for membership, a total of 18 x 4
bits of memory cells are required to represent one fuzzy
set.

Consider an example with a single rule: if x = A
then y = B where A and B have 8 x 2 resolution (note
that A and B have four levels of probability and eight
members for membership). Inferring from a single rule
is based on computation of the value of a:

a = max(min(p(i) of A, p(i) of A'))

where p(i) is the probability of the ith member of mem-
bership. The value of a corresponds to the degree of
matching between the fuzzy observation input and the
antecedent part mentioned previously (note that i is in
the range from 1 to 8). Level-0, level-l, level-2 and level-3
in grade correspond to 0%, 33%, 66% and 100% in
probability respectively, and is represented graphically
by the vertical axis. The final fuzzy output due to this
single rule will be given by the equation:

fuzzy output = min(a, p(i) of B) where i is from
1 to8.

Consider the following illustration, where A and B are
as shown in Figure 2a and b respectively. Suppose a
fuzzy observation input A' (shown in Figure 2c) is pro-
vided. Then min computation between A and A' is given
by min(p(i) of A, p(i) of A'), and will result in the fuzzy
set shown in Figure 2d. The value of a in this case
corresponds to the first level from the operation of
max(0,0,0,0,1,1,0,0) = 1. The final fuzzy output is given
by min(a,p(i) of B) (shown in Figure 2e).

As mentioned earlier, rules of inference are generally
of the form:

Rule I: if A 1 then B 1
Rule2: else if A 2 then B 2

RuleN: else if AN then BN

Given the above rules, the fuzzy inference computation
is given by the following algorithm:

1 For each of the rules (Rulel through RuleN), com-
pute a for the jth rule which is given by max(min(p(i)
of A], p(i) of A')) where Aj is the jth rule and A'
is an observation input. The fuzzy output Bj" is given
by min(a ofjth rule, p(i) of Bj) where B/is the action
part of the jth rule. The value of j is in the range
of 1 to N.

2 Compute max(p(i) of B ' 1 through BN').

From the above illustration we can conclude that it is
fairly straightforward to process a given set of fuzzy
inference rules based on the existing inferencing algor-
ithm.

NEW F U Z Z Y C O M P U T A T I O N

To overcome the significant drawbacks in the algorithm
described above, a new fuzzy computation scheme is
introduced, although it slightly increases the complexity
of computations for fuzzy processing (details of the
drawbacks in the existing fuzzy computation scheme are
described below). With the new computation scheme
put forth, fuzzy expressions are easily expandable to
multi-dimensional membership functions for more fruit-
ful fuzzy expressions, while the existing fuzzy theory
is based on one dimensional membership functions so
that applications are limited. Also, architectures of fuzzy
inference engines based on the new fuzzy scheme are
proposed. The proposed fuzzy inference engine is recon-
figurable depending on given fuzzy expressions or com-
positional rules of inference. In this sense, the engine
has wider scope of applications. The proposed Very
Large Scale Integration (VLSI) fuzzy inference engine
is expected to be very powerful as a real-time expert
system. The engine will have several Million Fuzzy Logic
Inferences Per Second (MFLIPS) computation capabil-
ity, thus the research on the new fuzzy inference engine
is worthwhile, as well as indispensable, for real-time rea-
soning in some AI applications.

Conventional reasoning algorithm drawbacks

To understand the drawbacks in the conventional rea-
soning scheme, consider a single inference rule: 'if x
= A t h e n y = B.

Suppose:

n = { x . x = ,X,o},

u(x) = [oJ] ,

A = 0.1/3 + 0.2/4 + 0.3/5 + 0.2/6 + 0.1/7,

B = {Yl,Y2 ,Ylo},

Vol 2 N o 2 June 1989 111

Noise dote

Wrong ¢L by
• , o . , noise data

z z 2 2 2 * * * * * * o ~ * * * * * Expected 0

Figure 3. Fuzzy matching with the presence of noise, coo."
observation data," ***." antecedent data

u(y) = [0,1],
B = 0 .1 /3+0 .2 /4+0 .3 /5+0 .2 /6+0 .1 /7"

If the observation input x is A' where:

A' = 0.1/3 +0 .2 /4+0 .3 /5+0 .2 /6+0 .1 /7

then the result of a will be 0.3 based on the conventional
reasoning scheme. This is because a as given by the
equation:

a = max(min(uA(xi), uA'(xi))) where i = 1 10

becomes 0.3. This a should be 1.0 instead of 0.3 because
the observation input A' and the antecedent A are exactly
the same, i.e. the condition in 'x = A' is perfectly
matched with the observation input A', which means
that the conclusion 'y = B' should be 100% activated.
To avoid such problems in the conventional reasoning
scheme, the observation fuzzy input A' and the antece-
dent fuzzy set A' must always be normalized to 1 where
the computation of normalizations can be very expen-
sive. Otherwise, it is simply prohibited to use such unnor-
malized fuzzy sets.

The other significant drawback lies in noise tolerancy.
If a fuzzy observation input contains unfiltered noise
data, the value of ~ can be incorrectly computed by
the presence of a single noise data. Referring to the
case shown in Figure 3, where the shaded regions of
'***' and ' co ' represent the antecedent and observation
data respectively, the value of a computed will be equal
to 1. The correct a should be close to 0.

New fuzzy reasoning scheme

To introduce the new fuzzy computation algorithm we
have to first define an important term, 'similarity', which
is denoted by o. Simlarity is a measure of resemblance
between two fuzzy sets. The magnitude of o is between
zero and unity. Consider the inference rule 'if x = A]
then y = B~'. Let A' be an observation fuzzy input
and B' be the final fuzzy output. Similarity o between
A' and A~ is applied to obtain uB' where:

uB' = cr x uBl(yi) for• = 1 M

The similarity between A' and A ~ can be computed from
the following equations:

*The first equation denotes that there are ten members in the member-
ship; the second equation implies that probability is in a range of
0 to 1; in the third equation, 0.1/3 (grade/member) means that the
probability of member 3 is 0. !. For members not specified, a descrip-
tion of 0/member is assumed for simplicity.

AI * A'
o o o * * * * *

o e e o o o * * * * * * *

eq-,~oooqmmmm.. .. .
NoNuelammiaa.. ***** . 0 l l I l i l i l l I l l

Attribute b Attribute

O-

It

Figure 4. (a) Matching of the if part 'uA1 (xi)' and
'uA'(xi) ". ooo," A1; ***: A', • • • : difference dbetween

fuzzy set A a and A', (b) Activation of the then part of
'uB1 (Yi) ' of the rule. • • • : difference d

o ,

d =
M

Z
i = 1

[max(uA l (Xi),uA' (xi)) - min(uA l (xi), uA" (xi))]

M

a = ~ UAl(X~)
i = 1

M

a'= ~, uA'(xi)
i = I

To better understand the above equations, refer to Fig-
ure 4a and b. The shaded areas (' ee ' and '**') in Figure
4a are the difference d between the fuzzy set A1 and
the observation input A'. The difference d corresponds
to the result of an exclusive-OR operation in set theory.
Thus, the relative difference is given by d/(al + a'), where
aa and a' are EuAl(x~) and EuA'(x~) respectively. The
significant advantage of the proposed fuzzy scheme lies
in the fact that all the fuzzy sets used such as A', A1
and B~ are not necessarily normalized, while all the fuzzy
sets in conventional fuzzy theory have to be normalized
to 1. Remember that A~, A' and B~ sets in Figure 4a
and b are not acceptable by the conventional theory,
since they are not normalized. The second advantage
of similarity lies in the fact that similarity computation
can eliminate the undesired noise data effects (discussed
above - - see Figure 3).

Consider the following set of inference rules:

Rule#l: if A 1 then B1
Rule~2: else if A 2 t h e n B 2

Rule#3: else if Aa then B a

Rule#N: else if Au then Bu

Given an observation data A', the following equations
can be used to infer from the rules above:

crj is the similarity in the jth rule between Aj and A'.

c j = [1 - (a j d i a ,) l

M

= ~ [max(uAj(x,), uA'(x~)) - min(uAj(x,),
~= j uA'(xi))] (where M is the number of

members).

112 Knowledge-Based Systems

M

aj= E ua,(x,)
= 1

M

a'= E uA'(x,)
= 1

u (r)=6j x uS,<r)

uB" = max(uBf(Y)) forj = 1, . . . , N

To understand complex expressions, consider the follow-
ing set of rules:

Rule#l: i f (w = At and x - B t) or y = C1 then z = Dx,

Rule#2: d s e i f w = A 2 or x = B z or y = C2 then z = D2,

Rule#3: else if w -~ A3 and x = B3 and y = C3 then z = D 3.

6~x is similarity of A, and A' in the ith rule.
aj2 is similarity o f B~ and B' in the ith rule.
6~3 is similarity of (7,. and C in the ith rule.

For ru le# l , u l ~ -- m a x (m i n (a H , 6 1 2) , 6 t3) x uD1

For rule#2, uD~ - ~ ma, x(G21,ff22,623) × uD 2
For rule#3, uD~ = min(G31,o'32,G33) X uD 3

The final uD" will be given by:

uD' = max(uDl', uD~, uD~)

Note that the and and or operators in the antecedent
of complex expressions do not require any special addi-
tional hardware to be implemented. The and and or
operators correspond to rain and max operations respec-
tively, therefore expressions of arbitrary complexity can
be modified to equivalent expressions with just and and
or logical operators, which in turn can be realized in
hardware with the basic min and max modules.

R E A S O N I N G I N V O L V I N G M U L T I -
D I M E N S I O N A L M E M B E R S H I P F U N C T I O N

The conventional fuzzy theory contstrains users to use
only a one-dimensional membership function. The con-
straint was not significant in linguistic applications, but
general fuzzy inference applications have to deal with
more sophisticated membership functions. In many prac-
tical applications, two or more interdependent variables
have to be monitored simultaneously to determine the
final decision, e.g. when fuzzy inference rules are applied
to pattern recognition, at least two-dimensional member-
ship functions have to be used. To represent a two-
dimensional membership function, two different attrib-
utes and probability (membership function) have to be
used, e.g. to express a small hill in Figure 5, the fuzzy
set will be:

u (X , Y) = u/x/y
1/4/3+1/5/3+1/6/3+1/3/4+2/4/4+
3/5/4+2/6/4+1/7/4
+1/3/5+3/4/5+4/5/5+3/6/5+1/7/5+
1/3/6+2/4/6+3/5/6
+2/6/6+1/7/6+1/4/7+1/5/7+1/6/7

whe~ u = ~ , 8] , X = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10} , a n d Y =
{1,2,3,4,5,6,7,8,9,10}.

7

61 ~s
2'

I
ol

X
I '

o ::::::::::::::::::::::::::::::::
z i:IiiIiiIiiii,ii'!i'ii'ii"i""

6 ; : ' ; : ~::: :I:: ::'::'::'::"
, iiiiif!il!i!ii!i! :'

1 2 3 4 5 6 7 8 9 1 0
Y

Figure 5. Two dimensional membership function

Similarly, to represent a three-dimensional member-
ship function, three different attributes and probability
(membership function) have to be used. Thus, the mem-
bership function u(X,Y,Z) can be applied to three-
dimensional space problems. The complexity of the
inference engine increases as the number of attributes
increases.

F U Z Z Y I N F E R E N C E E N G I N E
A R C H I T E C T U R E S

There are basically two types of architecture for sequen-
tial inference engines: serial; and parallel. In serial sys-
tems, each rule is processed independently one after
another. The valid fuzzy output is obtained when all
the inference rules have been processed. For parallel
engines, all the rules are processed at the same time,
and the final conclusion is produced by introducing a
max operation on the conclusions of all the rules. The
decision whether to use Random Access Memory
(RAM) or Read Only Memory (ROM) to store the
rules and whether to load the rules from within the
chip or externally depends on the application and the
availability of silicon space within the processor. Two
alternative architectures for realizing fuzzy inference en-
gines on hardware are described below.

Serial e n g i n e

Figure 6 shows the data path for a serial engine. The
memory required for storing all the fuzzy sets can be
located within the chip or it can be external to the chip.
The fuzzy sets are repeatedly fed into the processor until
all the rules have been applied. The advantage of such
a system is its smaller area: this is particularly useful
if we have a large number of rules for the expert system
and the engine has to be small. The register labelled
R e g _ A in Figure 6 retains the value of similarity after
the fuzzy set that represents the antecedent part of the
rule has been processed. This value is denoted by o,
as described before. A shift register with storage equal
to the number of bits for one fuzzy set is needed to
accumulate the activation of all the rules. Retrieving
the valid output of the inference engine can be done
after the last rule has been applied. Assuming that .a
single chip consists of a single serial engine, it is easy
to enhance the speed by using more than one chip. As
shown in Figure 7 , if we have two fuzzy engines, each
engine can process half the number of fuzzy sets. An

Vol 2 No 2 June 1989 113

A !

Aim
MIN]

.Ax I

B i

X

Magnitude
Comporotor

Counter

I
t Rag -A]

MIN

1 I
MAX [

B'

Figure 6. Serial engine. *." register," SR." shift register;
---: divider

additional max operation is needed externally to com-
pute the final decision.

Based on the new computation scheme, a divider is
required to perform division between two numbers. To

INFERENCE
ENGINE

#1

INFERENCE
ENGINE

2

I I
External

MAX

FUZZY
OUTPUT

Figure 7. Inference engine using two processors

achieve this, a divider has been used that is composed
of an adder, a magnitude comparator and a synchronous
counter, e.g. if we have fuzzy sets with 8 levels of grade
and 16 members in the membership, we would need
a 7-bit adder, 7-bit magnitude comparator and a 3-bit
counter to implement the divider (note that accurate
division is not necessary since the probability levels have
been discretized to grade levels. This is analogous to
performing a long division and discarding the remain-
der).

Two different reset signals are needed to synchronize
the inference engine: the first reset signal resets the engine
up to the point of Reg____A in Figure 7, i.e. after the
value of o has been computed for each rule; a second
global reset signal is needed to refresh the whole system
prior to the start of a new fuzzy logic inference.

Parallel engine
An alternative to the serial architecture is the parallel
engine. In this case, all the rules are processed in parallel,
thus enhancing the speed. Figure 8 shows the data path
of a single rule processor in a parallel engine. Since
all the rules are processed at the same time, the shift
register (shown in Figure 7) is not necessary in this case.
The data path of Figure 8 is repeated as many times
as the number of rules to be handled. Final output is
then produced by a max operation which can either
be external to, or locally within the chip. A global reset
signal prepares the engine for each new fuzzy logic infer-
ence. Even though this architecture consumes more sili-
con area, it is generally faster and is suitable for real-time
expert systems. To enhance the speed even further, each
fuzzy set of a rule can be subdivided into portions that
are processed in parallel, e.g. to double the speed, two
data paths of Figure 8 with an additional max operation
will be used to process a single rule. For inference engines
with too many rules, more than one chip can be used.
As is the case with serial engines (see Figure 7), an
external max operation is needed. The main limitations
to the number of rules that can be realized on a single
chip are the die area and the number of input and output
pins per chip.

114 Knowledge-Based Systems

A'

Ai

M'N 1 MAX I

. ~ m

X Y

B i

Magnitude
Comporotor

t
!

I Reg-A I

I] '
MIN

To MAX
operation

Figure 8. Parallel engine. *." register;" divider

R E C O N F I G U R A B L E A R C H I T E C T U R E F O R
G E N E R A L P U R P O S E F U Z Z Y P R O C E S S I N G

The overall fuzzy inference engine can be implemented
using a few basic modules: min and max modules are
the most commonly used. A general purpose module
which can perform both min and max operations with
a mode input that determines the mode of operation
(either min or max) can be used. However, in order
to optimize designs, it is preferable to have specific
modules that perform only min or max operation. Other
modules that are also used are shift registers, counters,
RAM and ROM. With the computation scheme de-
scribed above, modules for performing addition and
magnitude comparison are also required.

A proper design environment requires the support of

A B C

I I
MAX

I
I

MIN

X

Figure 9 (A) or (B) and C expression

a good module library. For designing application-speci-
fic VLSI systems, by limiting the domain of applications
it is possible to create a design environment such that
all the proper resources are available to support our
design acivities. In the case of inference engines, the
module library should as much as possible cover a com-
plete range of modules that will be used like min, max
and counters. Fortunately, from the standpoint of prac-
ticality in real world applications, it is not necessary
to have a big library with a huge number of modules.
Other modules that are structurally regular like RAM,
ROM and shift registers can be automatically generated.

Depending on the expression in the inference rules,
the architecture of the inference engine may have to
be reconfigured. So far, the architecture described takes
into account rules with single variable antecedent. When
the antecedent contains more than one variable, such
as 'x = A and y = B', 'x -- A or y = B', 'x =
A or y = B and z = C', etc., we need to modify the
existing inference engine to handle the multiple variables.
As it turns out, the logical operators and and or corres-
pond to min and max operation respectively. As shown
in Figure 9, for an expression with antecedent of the
form '(x = A or y = B) and z = C', the output labelled
X becomes the input instead of Ai in Figures 6 and
8.

C O N C L U S I O N

A reliable approach to approximate reasoning in expert
systems has been presented here. With this improvement,
it is not necessary for the fuzzy data to be normalized,
which is not the case in conventional fuzzy reasoning
schemes. Using this improved scheme, the presence of
noise does not affect the correctness of the decision.
This is achieved by computing the similarity factor o
between two fuzzy sets. Similarity is a measure of
resemblance between two fuzzy sets, and its value deter-

Vol 2 No 2 June 1989 115

mines the level of activation of the conclusion part of
each rule. The use of multi-dimensional membership
fuzzy logic for certain real-time expert systems has also
been introduced. To implement the fuzzy inference en-
gine, two different architectures using essentially the
same components were presented. The architectures de-
scribed are also easily reconfigurable to handle complex
fuzzy expressions for more fruitful real-time applica-
tions.

REFERENCES

1 Ito, N and Shimizu, H 'Data-flow based execution
mechanisms of parallel and concurrent Prolog' New
Gener. Comput. Vol 3 (1985) pp 15--41

2 Onai, R, Shimizu, H, Masuda, K, Matsumoto, A and
Aso, M 'Architecture and evaluation of a reduction-

based parallel inference machine: PIM R' Lecture
Notes in Computer Science Springer-Verlag, FRG
(1986)

3 Yokota, H and Itoh, H 'A model and an architecture
for a relational knowledge base' Proc. 13th Int. Sym-
posium on Comput. Architecture (1986) pp 2-9

4 Lusk, E L and Overbeek, R A The Automated Reason-
ing System ITP Argonne National Laboratory,
Argonne, IL, USA (1984)

5 Togai, M and Watanabe, H 'Expert system on a chip:
an engine for real-time approximate reasoning' IEEE
Expert Vol 1 No 3 (Autumn 1986) pp 55-62

6 Takefuji, Y and Avampato, J 'Paramodulation Infer-
ence Engine' Internal Report, CAISR, Case Western
Reserve University, USA

7 Zadeh, L A 'Outline of a new approach to the analy-
sis of complex systems and decision processes' IEEE
Trans. Syst. Man & Cybern. Vol 3 (1973) pp 28-45

116 Knowledge-Based Systems

