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Parallel Algorithms for Finding a Near-Maximum Independent Set of a
Circle Graph

YOSHIYASU TAKEFUIJI, LI-LIN CHEN,

Abstract—A parallel algorithm for finding a near-maximum inde-
pendent set in a circle graph is presented. An independent set in a
graph is a set of vertices, no two of which are adjacent. A maximum
independent set is an independent set whose cardinality is the largest
among all independent sets of a graph. The algorithm is modified for
predicting the secondary structure in ribonucleic acids (RNA). The
proposed system, composed of an n neural network array (where » is
the number of edges in the circle graph or the number of possible base
pairs) not only generates a near-maximum independent set but also
predicts the secondary structure of ribonucleic acids within several
hundred iteration steps. Our simulator discovered several solutions
which are more stable structures, in a sequence of 359 bases from the
potato spindie tuber viroid (PSTV), than the formerly proposed struc-
tures. The simulator was tested in solving other problems.

I. INTRODUCTION

HIS paper introduces a parallel algorithm for finding

a near-maximum independent set of a circle graph
within several hundred iteration steps. The circle graph is
very suited for computing the secondary structure of ri-
bonucleic acids (RNA). Nonintersected edges in the circle
graph provide information on the base pairs for the fold-
ing of the chains like the beads in a necklace. To generate
the stable RNA structure, we want to maximize the num-
ber of nonintersected edges or base pairs. The proposed
parallel algorithm is modified and used for predicting the
RNA secondary structure.

Nucleic acids are the means by which information about
the structure and function of a living organism is stored
and passed on to the next generation. Nucleic acids are
composed of only two types of molecules: deoxyribonu-
cleic acids (DNA) and ribonucleic acids. The organic
bases of RNA include two compounds (Cytosine and Ur-
acil) and two molecules (Adenine and Guanine). The pri-
mary structure is determined by the sequence of those
bases (C, U, A, and G). The secondary structure is de-
termined by the folding of the chains into a two-dimen-
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sional shape. The folding of the chains into a three-di-
mensional shape is called the tertiary structure. Predicting
the primary, secondary, and tertiary structures is ex-
tremely important, not only for fighting against viruses
and genetic problems, but also for enhancing the biotech-
nology. Tinoco’s RNA structure stability model is used
to compare our simulation results to the existing struc-
tures proposed by other investigators. The structure sta-
bility computation can show us how good our algorithm
is.

The proposed parallel algorithm not only generates a
near-maximum independent set of a circle graph but also
predicts the secondary structure of ribonucleic acids. It
requires n processing elements, where » is the number of
edges in the circle graph or the number of possible base
pairs. Our simulator, based on the proposed algorithm,
discovered the new structures in a sequence of 38, 55, and
359 bases from the potato spindle tuber viroid (PSTV),
two of which are more stable than the formerly proposed
structures. The simulator was used to solve other prob-
lems to test our algorithm.

We believe this is the first parallel/distributed process-
ing attempt to solve RNA secondary prediction problems.
This paper presents a clear comparison between the con-
ventional RNA folding algorithms, the backpropagation
algorithm by Qian and Sejnowski or by Holley and Kar-
plus, and our algorithm. Although the proposed algorithm
is parallel computing, the simulator is currently running
on sequential machines of an HP Apollo 3500 computer
and a DEC 3100 computer under a UNIX operating sys-
tem. The state of the system can usually converge to the
near-optimum solution within about 500 iteration steps.
We believe this paper presents a major breakthrough in
not only computer science/engineering fields, to solve
such NP-complete problems, but also in molecular biol-
ogy fields.

The algorithm uses n processing elements where each
processing element performs the following binary func-
tion: V; = 1 if U; > 0, 0 otherwise, where V; and U, are
the output and input of the ith processing element. The
processing element is called the McCulloch-Pitts binary
neuron [1]. The first neural network for solving optimi-
zation problems was introduced by Hopfield and Tank [2].
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Takefuji and Lee successfully used the Hopfield neural
network with McCulloch-Pitts binary neurons to solve the
graph planarization problem [3], the tiling problem [4],
and the sorting problem [5].

II. FINDING A NEAR-MAXIMUM INDEPENDENT SET OF A
CIRCLE GRAPH

An independent set in a graph is a set of vertices, no
two of which are adjacent. A maximum independent set
is an independent set whose cardinality is the largest
among all independent sets of a graph. The problem of
finding a maximum independent set for arbitrary graphs
is NP-complete [6], [7]. Gavril developed a 6( n’) time
algorithm for finding a near-maximum independent set in
a circle graph, where n is the number of edges in the circle
graph [8]. Supowit proposed an O(n?) time algorithm in
the circle graph [9]. Hsu gave an O(m*) time algorithm
on the planar perfect graphs, where m is the number of
vertices [10]. Choukhmane [11] and Burns [12] proposed
an algorithm on cubic planar graphs. Masuda gave an O(n
log n) time algorithm on the circle graphs [13]. Several
parallel algorithms have been proposed by Karp [14],
Luby [15], and Goldberg [16], where the computation
time is O((log m)*).

Consider the simple circle graph with 14 vertices and 7
edges as shown in Fig. 1(a). The adjacency graph can be
obtained from the edge-intersection in the circle graph.
For example, the edge ‘‘d’’ intersects with three edges:
c, e, and f. The adjacency graph G(V, E) of the circle
graph in Fig. 1(a) is given by V = {a, b, ¢, d, e, f, g}
and E = {(a, b), (b, ¢), (b, e), (b, f), (¢, d), (d; e),
(d, ), (e, f), (f, 8)}. A setof vertices {a, c, e, g}, as
shown in Fig. 1(b), is the maximum independent set of
this circle graph, which is equivalent to the maximal
planar subgraph. It is given by G(V, E) with V = {1, 2,
<o L 1AYE = {(1, 13), (4, 7), (3, 11), (8, 10)},
where a set of edges (1, 13), (4, 7), (3, 11), (8, 11) in
Fig. 1(a) is equivalent to a set of vertices (a, ¢, e, g} in
Fig. 1(b). In other words, to find the maximum indepen-
dent set of the adjacency graph in the circle graph is
equivalent to finding the maximum planar subgraph in the
circle graph. In order to find the near-maximal planar
subgraph in the circle graph with m vertices and n edges,
n neurons (processing elements) are used in our algo-
rithm. The output state of the ith neuron V; = 1 means
that the ith edge is not embedded in the circle graph. The
state of ¥; = 0 indicates that the ith edge is embedded in
the circle graph. The motion equation of the ith Mc-
Culloch-Pitts binary neuron fori = 1, -+ + , n is given
by the following equation, where d,, = 1 if the xth edge
and the yth edge intersect each other in the circle graph,
0 otherwise.

%(t{i =4 <é:1 dy (1 — Vj)(distance(i))_]> (1 -V

~m(Zau-n)n (1)

Fig. 1. (a) The circle graph with 14 vertices and 7 edges. (b) The maxi-
mum independent set.

Edge-intersection conditions between the ith and jth edges
in the circle graph are given by: head (i) < head(j) <
tail (i) < tail(j)andhead(j) < head (i) < tail(j) <
tail (i ) where tail (i ) and head (i) are two end vertices of
the ith edge. Note that distance (i) is given by dis-
tance (i) = min (|head (i) — tail (i )|, |n + head (i) —
tail (i ) |) where tail () > head (i ). The function 2 (x) is
1if x = 0, O otherwise.

The first term is the inhibitory force used to remove the
edges which intersect with the ith edge in the circle graph.
If the ith edge is removed from the circle graph, the first
term will not be activated at all because the state of the
ith neuron should be V; = 1. In order to keep the ith edge
in the circle graph, the first term should not have any edge-
intersection violation. Whenever the ith edge has any
edge-intersection violation, it will eventually be removed
from the circle graph. The last term is the encouragement
force used to embed the ith edge in the circle graph. If
the ith edge is removed but does not intersect with any
other edges, the last term will force the ith neuron to be
¥V, = 0. In other words, the ith edge is encouraged to exist
in the circle graph.

The following procedure describes the proposed paral-
lel algorithm.

0) Setz = 0.

1) The initial values of U;(0) for i = 1, -+, nare
set to small negative numbers or randomized.

2) Evaluate values of V; (¢) fori = 1, -+, nbased

on the binary function.

vi(t)=1 if U (1) >0,

0 otherwise.

3) Use the motion equation in (1) to compute AU, (7).
AU (1) = A <Zl d;(1 - I/j(t))(distance(i))q)
j=
(1 =¥(0)

- (54,0 - vw) v,



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 1. NO. 3. SEPTEMBER 1990

4) Compute U; (¢ + 1) on the basis of the first-order
Euler method.

Ui(t + 1) = U (1) + AU (1) Ar

5) Increment ¢t by 1. If AU;(¢) = O0fori =1, -+,
n, then terminate this procedure or go to step 2).

One example which was investigated is the circle graph
with 15 vertices and 27 edges. The simulation result was
where the cardinality of the independent set is 13 out of
27 edges. The near-maximum planar subgraph contained
13 edges, which is equivalent to the solution. It took 28
iteration steps with 4 = B = 1 and the time unit step A¢
= 1. A variety of circle graphs was investigated for ver-
ifying our motion equation to find the near-maximum in-
dependent set in the circle graphs. The simulation result
shows the robustness of our algorithm.

fori =1, - ,n.

III. APPLICATION TO RNA SECONDARY STRUCTURE
PREDICTION

Fresco used the first RNA secondary structure model
for predicting the secondary structure in ribonucleic acids
[17]. Two types of RNA folding algorithms have been
reported: the ‘‘combinatorial’” method, introduced by Pi-
pas [18], and the ‘‘recursive’” or dynamic programming
method, introduced by Nussinov [19]. Both algorithms,
including the latest method proposed by Zuker [20], are
all based on sequential computation. Unfortunately, few
parallel algorithms based on molecular thermodynamics
models have been reported. Recently, Qian and Sejnowski
[21] and Holley and Karplus [22] have reported a back-
propagation algorithm using a three-layer feed-forward
neural network for a protein secondary-structure predic-
tion. Their method is based on the correlation between
secondary structures and amino acid sequences. How-
ever, they have the following drawbacks over the conven-
tional RNA folding algorithms, based on molecular ther-
modynamics models. 1) They need a teacher to force the
network to learn the correlation between secondary struc-
ture and amino acid sequences. 2) The correlation models
cannot provide an accurate prediction if a completely un-
correlated new datum is given, where the previously
learned correlation information is useless. 3) Their feed-
forward neural network requires a prohibitively long
learning process to deal with a long sequence of bases for
the RNA secondary structure prediction. Their methods
cannot be applied to large-size prediction problems unless
a prohibitively long learning time is permitted. 4) No
theorem is given to determine the neural network archi-
tecture, including how many hidden layers and how many
hidden neurons per hidden layer should be used.

Our algorithm requires neither a teacher nor a learning
process. The proposed parallel algorithm, using n proces-
sors (where n is the number of possible base pairs), can
yield the suboptimum solution within several hundred it-
eration steps. Our goal is to maximize the number of edges
in the planar circle graph, where an edge represents pos-
sible base pairs, such as a G-C base pair or an A-U base
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pair. In the viroid structure prediction problem, Diener
supports our goal of maximizing the number of base pairs
[23].

The motion equation of (1) is used for predicting the
secondary structure of ribonucleic acids with two modi-
fications. One is that edge-intersection violation condi-
tions must be updated. The total of six conditions to de-
scribe the edge-intersection in the circle graph are
required: head(i) < head(j) < tail (i) < tail(j),
head(j) < head(i) < tail(j) < tail(i), tail(i) =
tail (j), tail (i) = head(j), head(i) = head(;j), and
head (i) = tail (). The last four violation conditions are
newly added to the first two conditions because a single
base must not be involved in more than one base pair. The
other modification is in the distance (i ) function of (1),
where distance (i ) is given by distance(i) = |head (i)
— tail (i )].

A sequence of m bases is given to the simulator. It gen-
erates the circle graph with m vertices and n edges, where
n is the number of possible base pairs, including G-C base
pairs and A-U base pairs. The possible base pairs must
also satisfy the hairpin-loop constraints, such as | head (i)
— tail (i )| > 3. Because Tinoco [24] stated that it is ster-
ically impossible to organize the hairpin loop with less
than three bases, the circle graph is fed to the neural net-
work simulator to find the near-maximum independent set.

Our simulator was tested by solving several secondary
structure prediction problems in ribonucleic acids. In this
paper, only one example is shown. A sequence of 38 bases
from residues 1118-1155 of E. coli 16S rRNA, given by
Stern [25], was used. Fig. 2(a) shows the secondary struc-
ture proposed by Stern [25] where the strength of the
structure’s stability is computed based on Tinoco’s sta-
bility number [24]: 1) A-U pair, +1; 2) G-C pair, +2;
3) G-U pair, 0; 4) hairpin loops, —5 to =7; 5) interior
loops, —4 to —7; 6) bulges, —2 to —6. For the details
of Tinoco’s stability model, see the paper [24]. The sta-
bility number of the secondary structure in Fig. 2(a) is
+7. Fig. 2(b) shows the circle graph with 38 vertices and
151 edges. When A = B = 1 and U; (0) = =5 fori =
1, - - -, 151, the state of the system converged to the
solution in the 104th iteration step. Fig. 2(c) shows the
simulation result which contains 14 edges. The secondary
structure of the simulation result is given in Fig. 2(d). The
stability number of the structure is +11. It indicates that
the simulator found a more stable structure than that of
Stern’s. Table I shows the simulation results where sev-
eral sets of the coefficients were used.

Not shown here is a sequence of 55 bases from an R17
viral RNA [24] which was investigated. The circle graph
has 55 vertices and 331 edges. When the following pa-
rameters were used: A = 1, B = 0.01, and U, (0) = -5
fori = 1, - -+, 331, the state of the system converged
to the solution in the 161th iteration step. Our algorithm
embedded 20 edges in the circle graph, where the struc-
ture stability is +7, while the stability of the structure
proposed by Tinoco is +8. For predicting the secondary
structure, several sets of coefficients were used.
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Fig‘.z. (a) Secondary structure of 38 bases by Stern. (b) The circle graph

with 38 vertices and 151 edges. (c) The maximum planar subgraph with
14 edges. (d) The simulation result of (c).

Finally, a sequence of 359 bases from the potato spin-
dle tuber viroid (PSTV) was used to test our algorithm.
Gross [26] proposed the secondary structure of the PSTV,
where the stability number is +62. The circle graph had
359 vertices and 1017 edges and was generated where
possible base pairs (i and j ) were given by the following
condition: 350 < i + j < 370. The proposed condition
drastically reduces the number of possible base pairs from
more than 100 000 pairs to 1017 pairs. The state of the

THE SIMULATION RESULT: THE RELATION BETWEEN THE COEFFICIENTS, THE
NUMBER OF ITERATION STEPS, AND THE NUMBER OF EMBEDDED EDGES

TABLE 1

A

No. of iteration
steps

No. of embedded
edges

1 02 24 14
1 03 34 14
1 05 s4 14
1 1 104 14
1 2 204 14
4 0.05 80 13
2 0.05 24 12
4 05 23 12
2 05 84 11

system converged to the solution in the 240th iteration
step with A = 1, B = 0.01, and U; (0) = =5 fori = 1,
+++, 1017. The simulation result of the near-maximum
planar subgraph had 359 vertices and 127 edges. In the
secondary structure of the simulation result, the stability
number is +50. Another simulation run was performed
when 4 = 1, B = 0.01, and small negative random num-
bers were assigned to U; (0) fori = 1, - - -, 1017. The
secondary structure is composed of 359 vertices and 128
edges, where the stability number is +65. Sanger pro-
posed another secondary structure of the PSTV, where the
stability number is +64 [27]. A variety of the simulation
runs were performed where several sets of the coefficients
were used. The simulation result indicates that our sim-
ulator found the most stable structure of the PSTV. Our
simulation result shows that, within about 500 iteration
steps, the state of the system can converge to the solution
in the PSTV secondary structure prediction problem.

IV. CoNcLUSION

In this paper, we have shown the parallel algorithm for
finding a near-maximum independent set and predicting
the secondary structure of ribonucleic acids. The algo-
rithm uses n processing elements, where n is the number
of edges in the circle graph or the number of possible base
pairs in ribonucleic acids (RNA). Our simulation result
shows that the state of the system converges to the solu-
tion within several hundred iteration steps. The simulator
discovered that the most stable structures in a sequence of
38 bases and a sequence of 359 bases from the PSTV were
within 500 iterations.
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