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Abstract. A hysteresis binary McCulloch-Pitts neuron 
model is proposed in order to suppress the complicated 
oscillatory behaviors of neural dynamics. The artificial 
hysteresis binary neural network is used for scheduling 
time-multiplex crossbar switches in order to demon- 
strate the effects of hysteresis. Time-multiplex crossbar 
switching systems must control traffic on demand such 
that packet blocking probability and packet waiting 
time are minimized. The system using n x n processing 
elements solves an n x n crossbar-control problem with 
O(1) time, while the best existing parallel algorithm 
requires O(n) time. The hysteresis binary neural net- 
work maximizes the throughput of packets through a 
crossbar switch. The solution quality of our system 
does not degrade with the problem size. 

Introduction 

In time-multiplex communication systems, crossbar 
packet switches route traffic from the input to output 
where a message packet is transmitted from the source 
to the destination. The randomly incoming traffic must 
be controlled and scheduled to eliminate conflict at the 
crossbar switch where the conflict is that two or more 
users may simultaneously access to a single output. The 
goal of the traffic-scheduling for time-multiplex cross- 
bar switches is not only to maximize the throughput of 
packets through a crossbar switch but also to minimize 
packet blocking probability and packet waiting time. 

A request for packet transmission through an n x n 
crossbar is described by an n x n traffic matrix T. In the 
traffic matrix T, each element tg represents a request of 
packets from input i to output j. For example, tij = 0 
means that there is no packet to be transmitted on the 
j th  output line from the ith input line. tij = 1 means 
that at least one packet on the ith input line should be 
transmitted on the j th  output line of the crossbar. 

In 1979 Inukai at COMSAT lab. proposed the 
O(n 2) sequential algorithm for the n x n crossbar switch 
problem (Inukai 1979). In 1989 Rose at AT&T Bell lab. 

presented the O(n) parallel algorithm based on a cellu- 
lar automaton where n 2 processing elements are used 
for solving an n x n traffic matrix problem (Rose 1989). 
Chen, Mavor, Denyer, and Renshaw proposed the 
O(n 2) sequential algorithm of traff• routing problems 
for the multiprocessor system (Chen et al. 1990). They 
proved that the problem is NP-complete (Chen et al. 
1990). In 1989 Marrakchi and Troudet at Bellcore 
proposed the n x n neural network algorithm based on 
Hopfield network model (Marrakchi and Troudet 
1989). However with the Hopfield neural network, the 
state of the system is forced to converge to the local 
minimum. In other words, the solution quality drasti- 
cally degrades with the problem size. Takefuji and Lee 
have successfully used the Hopfield neural network with 
McCulloch-Pitts binary neurons for solving the graph 
planarization problem (Takefuji and Lee 1989) and the 
tiling problem (Takefuji and Lee 1990a) where the state 
of the system converges to the near-global minimum in 
O(1) time. They proved that the state of the binary 
neural network system is guaranteed to converge to the 
local minimum (Takefuji and Lee 1990b). In 1986 
Hoffman and Benson introduced sigmoid neurons with 
hysteresis for learning, where any changes in synaptic 
connection strengths are replaced by hysteresis 
(Hoffman and Benson 1986). Due to the hysteresis 
associated with each neuron, the system tends to stay in 
the region of phase space where it is located. They 
proposed the theory on a role for sleep in learning 
(Hoffman and Benson 1986). 

Dynamic and static hysteresis in Crayfish stretch 
receptors was reported by Segundo and Martinez in 
1985 (Segundo and Martinez 1985). They stated that 
hysteresis may be more widespread than suspected in 
sensory and perhaps other system. In 1989 Keeler, 
Pichler, and Ross presented the effects of hysteresis in 
pattern recognition and learning for improving the 
signal-to-noise ratio (Keeler et al. 1989). In this paper 
the hysteresis property is exploited in order to reduce 
the complicated oscillatory behaviors of neural dynam- 
ics for solving combinatorial optimization problems. 
The hysteresis with each neuron enhances the state of 
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the system to stay in the region of  phase space where it 
is located. In other words, it suppresses the oscillatory 
behaviors of  neural dynamics so that the convergence 
time to the global minimum is drastically shortened. 

The McCulloch-Pi t ts  neuron model is a binary unit 
whose value depends on the linear sum of  weighted 
inputs from the other neurons in the network (McCul- 
loch and Pitts 1943). Figure la shows the input/output 
relation of  the McCulloch-Pit ts  neuron model. In 1982 
Hopfield proposed the continuous input/output unit 
called the sigmoid neuron model (Hopfield 1982) as 
shown in Fig. lb. Simic presented the molecular elec- 
tronic device with hysteresis in 1986 where it has the 
sigmoid hysteresis (Simic 1986). 

In this paper a binary neuron model with hysteresis 
is introduced. Figure lc shows the input/output relation 
of  the hysteresis binary neuron model. A binary neural 
network with hysteresis is used for scheduling time- 
multiplex crossbar switches in order to demonstrate the 
effects of  hysteresis. The complicated oscillatory behav- 
ior is one of  the most undesirable phenomena in neural 
dynamics for solving optimization problems where we 
lack the mathematical tools to manipulate and under- 
stand them at a computational level (Hopfield and 
Tank 1986). Hysteresis suppresses the oscillatory behav- 
iors of  neural dynamics and consequently it shortens 
the convergence time to the global minimum. In other 
words, hysteresis in individual neurons allows the state 
of  the proposed neural network to converge to the 
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Fig .  1. a B i n a r y ,  b s i g m o i d ,  a n d  e hys te res i s  b i n a r y  f u n c t i o n s  

global minimum in O(1) time. The system uses an n x n 
neural network array for solving an n x n crossbar 
switch problem where the output of  the ijth hysteresis 
neuron V U is given by: V U = 1 if U o. > UTP (upper trip 
point), 0 if U o. < LTP (lower trip point). Note that Ug 
is the input of  the /jth neuron. The output at any 
particular time does not depend only upon the present 
value of  the input but also upon past values. 

The proposed hysteresis binary neural network not 
only maximizes the throughput of  packets through a 
crossbar switch but also minimizes packet blocking 
probability and packet waiting time. The constraints on 
an n x n crossbar switch are that no two inputs may be 
connected to the same output simultaneously and that 
no one input may be connected to more than one 
output simultaneously. In other words, no two packets 
should share the same row and the column of  the traffic 
matrix. 

The system simulator was developed based on the 
proposed model. A large number of  simulation results 
are shown and demonstrated in order to support the 
effects of  hysteresis. 

Neural network representation 

The constraints are considered that no two packets 
should share the same row and the column of  the n x n 
traffic matrix. Our system uses an n x n neural network 
array where the motion equation of  the ijth neuron is 
given by: 

at A(k~, V~k --A(k ~ Vkj-- 

+ Bh + Bh (1) 
k 1 k 1 

where h(x) is called the hill-climbing term, h(x) is 1 if 
x = 0, 0 otherwise. Note that coefficients A and B are 
constant. The first term and the second term are the 
row constraint and the column constraint respectively. 
The first term forces one and only one neuron to be 
fired per row. If  no neuron is fired per row or per 
column then it will perform excitatory forces. I f  more 
than one neuron are fired per row or per column then 
it will act inhibitory forces. The third term and the last 
term are the row hill-climbing term and the column 
hill-climbing term respectively. The hill-climbing terms 
are activated only when local conflicts (where no neu- 
ron is fired per row or column) are detected. I f  there is 
no conflict the hill-climbing terms will perform no 
operation. In other words, the local conflicts are re- 
solved by the hill climbing terms where the / j th  neuron 
is encouraged to fire if the neuron has conflicts. 

Parallel algorithm of the hysteresis neural network 

The following procedure describes the proposed parallel 
algorithm. 



0. Set t = 0. 
1. The state of  the input U0(t ) for i = 1 , . . . ,  N and 

j = 1 . . . . .  N is randomized and evaluate the output  
Vo(t ) for i = 1 . . . . .  N a n d j  = 1 . . . . .  N: Vo(t ) = 1 if 
Uv(t) > 0, 0 otherwise. Goto  step 3. 

2. Evaluate the output Vo.(t) for i =  1 , . . . , N  and 
j = l  . . . . .  N: 

Vo(t ) = 1 if Uo(t ) > UTP, 0 if  Uo(t ) < LTP. 

3. Compute  Uo(t + 1) for i = 1 . . . . .  N and 
j = 1 . . . . .  N based on the firsr order Euler method: 

Uo(t + 1) = Uo(t ) + DUo(t ) 

where 

DUo(t) = -JIC:ffi V~(t) -- l)-- A(k:= Vkj(t) -- I ) 

+ Bh(k~=l Vik(t))+ Bh(k~=l Vkj(t) ) 
4. I f  U~(t + 1) > U _ m a x  then Uo(t + 1) = U _ m a x  

I f  Uo(t + 1) < U_min  then U~(t + 1) = U_min  
5. I f  all the conflicts are resolved then terminate this 

procedure else increment t by 1 and go to step 2. 
The simulator has been developed on a Macintosh 

SE/30 and a DEC3100 workstation. Figure 2a shows 
the relation between the number  of  iteration steps, the 
problem size, and the band size of  hysteresis. The 
hysteresis band size is given by the hysteresis band 
s i z e =  IUTP I = ILTPI . When no hysteresis is given to 
each neuron, it usually takes more than 5000 iteration 
steps or does not converge to the global minimum at 
all. Figure 2b zooms up the part  of  Fig. 2a where a 
range of  the hysteresis band size is one through five. 
Figure 2a and b shows that the state of  the system can 
converge to t h e  global minimum in O(1) time. The 
hysteresis band size = 1, 2 or 3 gives the relatively good 
convergence to the global minimum. 

Figure 3 shows the relation between the average 
number  of  iteration steps and the problem size where 
10 x 10 crossbar problems through 150 x 150 crossbar 
problems were investigated. Note  that 100 simulation 
runs were performed to obtain the one average number  
of  iteration steps per problem. The simulation result 
depicts that the state of  the system converged to the 
solution within several hundred iteration steps. The 
solution quality of  a hysteresis binary neural network 
with small hysteresis does not degrade with the problem 
size as far as we have observed. Figure 4 a - d  show 
several solutions for n x n crossbar problems. The fol- 
lowing parameters  were used in our simulation: A = 1, 
B = 1 if (t mod  10) < 2, 0 otherwise, U_min  = - 800, 
and U _ m a x  = 200. Based on our simulation results the 
hysteresis in individual neurons effectively suppresses 
the oscillatory behaviors of  neural dynamics. Conse- 
quently the convergence time to the solution is short- 
ened. 

The oscillatory behavior can be observed when 
more than one neuron simultaneously and alternatively 
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Fig. 2. a The relation between the number of iteration steps, the 
problem size, and the hysteresis hand size. b The relation between the 
number of iteration steps, the problem size, and the hysteresis band 
size 

fire on and off. We believe that the hysteresis in individ- 
ual neurons reduces chances for neurons to simulta- 
neously firing on or off. Suppose that the state of  
oscillatory neurons is in the hysteresis band. The other 
neurons have chances to compete with them and their 
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Fig. 3. The relation between the average number of iteration steps 
and the problem size when the hysteresis band size is 3 
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Fig. 4. a The initial state of a 50 x 50 traffic matrix and the solution. 
The black square represents nonzero in the traffic matrix, b The initial 
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150 X 150 traffic matrix and the solution. The black square represents 
nonzero in the traffic matrix, d The initial state of a 200 x 200 traffic 
matrix and the solution. The black square represents nonzero in the 
traffic matrix 

competition disturbs the oscillatory behavior. If  the 
oscillation is disturbed or alleviated, the convergence 
time to the solution can be shortened. 
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