
Neurocomputing 3 (1991) 97-106 97
Elsevier

A parallel algorithm for solving the
'Hip' games

N o b u o F u n a b i k i * a n d Y o s h i y a s u T a k e f u j i
Department of Electrical Engineering and Applied Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA

Abstract

Funabiki, N. and Y. Takefuji, A parallel algorithm for solving the 'Hip' games, Neurocomputing 3 (1991) 97-106

A parallel algorithm for solving the 'Hip' games based on an artificial neural network model is presented in this paper. The
game of 'Hip' is named because of the hipster's reputed disdain for 'squares'. The rule of the game is to place the counters
on a checkerboard so that four of them do not mark the corners of a square. The square may be of any size and be tipped
at any angle. Normally this game is played by two players, where the game on a six-by-six checkerboard is the maximum
size for the solution. The solution means that every player can place all the counters on the checkerboard without
violations. In other words, the goal of our algorithm is to find the pattern of a draw game between players where they
should not mark the corners of a square. In order to enlarge the size of the checkerboard where a solution exists, we
modified the game as n/2 players play on an n-by-n checkerboard where n is an even number. The proposed parallel
algorithm requires m x n 2 processing elements for the m-player-n-by-n-checkerboard game to find the solution of the 'Hip'
games. The algorithm is verified by solving six games where the size of the checkerboard is varied from 4 to 12.

Keywords. Parallel algorithm; artificial neural network; modified McCulloch-Pitts neuron model; Hip game: draw game
pattern.

I. Introduction

Martin Gardner introduced the game of 'Hip'
where each player should place the counters on a
checkerboard so that any four of them do not
mark the corners of a square [1]. The square
may be of any size and be tipped at any angle.
Figure I shows four of the squares on a six-by-six
checkerboard where there are 105 possible
squares. The number of different squares on an
n-by-n checkerboard is given by (nn-n2)/12
[2]. If a player makes a square, he loses the
game. The goal of our algorithm is to find the
solution of this game. The solution means that
each player can place all the counters on a
checkerboard without making a square. In other

* Funabiki is also with the system engineering division,
Sumitomo Metal Industries, Ltd., Ibaraki, Japan 314.

0925-2312/91/$03.50 © 1991- Elsevier Science Publishers B.V.

Fig. 1 Four of the 105 squares on 6-by-6 checkerboard.

98 N. Funabiki, Y. Takefuji

words, the goal of our algorithm is to find the
pattern of a draw game between players where
they should not mark the corners of a square.
Normally this game is played by two players, but
in this case it was proved by R.I. Jewett in 1960
that the game on a six-by-six checkerboard is the
maximum size where a solution exists. Therefore
we modified the game so that larger than six-by-
six checkerboards have a solution. The modified
game is that n/2 players play on an n-by-n
checkerboard where n is an even number. We
propose a parallel algorithm which generates
solutions in the conventional two-player games
and in the modified games.

The first solution or the draw game pattern for
the two-player-six-by-six-checkerboard game was
discovered by C.M. McLaury. Then D.H. Tem-
pleton proposed a simple symmetry strategy for
the second player to win this game or to find the
draw game pattern. The strategy is that the
second player should place his counter on the
cell which is rotated by 90 degrees around the
center of the checkerboard from the cell on
which his opponent placed his last counter. In
1963 W.W. Massie devised an algorithm for the
solution of the 'Hip' game by using this strategy.
In the algorithm he used a random number to
choose the cell on which the first player should
place his counter. Therefore the algorithm does
not guarantee to find the solution. No parallel
algorithm has been reported in the last three
decades.

In this paper we propose a parallel algorithm
to find the solutions in the 'Hip' games which is
based on an artificial neural network model. The
artificial neural network model uses a large num-
ber of simple processing elements which are
called neurons because they perform the func-
tion of the simplified biological neurons. The
artificial neural network model for solving com-
binatorial optimization problems was first intro-
duced by Hopfield and Tank [3]. The artificial
neural network model has been successfully ap-
plied for several NP-complete and optimization
problems [4-14].

The output Vqk of the ijkth processing element
based on the modified McCuUoch-Pitts neuron
model [15] follows:

Vqk = 1 if Uq~ > 0 and Uok

f o r r = l m

= max{Uijr}

= 0 otherwise, (1)

where Uqk is the input of the ijkth processing
element and m is the number of players. The
change of the input Uqk is given by the partial
derivatives of the computational energy E with
respect to the output Vq~. E is an n2× m-vari-
able function: E(VIll, V I I 2 , . . . , Vnnm) where n is
the size of the checkerboards. The equation is
called a motion equation or a Newton equation.
It is given by:

dUqk OE(V111 , Vii2 , . . . , Vnnm)

dt OVq,
(2)

In whatever form the computational energy func-
tion E is given, the motion equation forces it to
monotonically decrease. The following proof
shows that the motion equation forces the state
of the system to converge to the local minimum
[81.

Proof. Consider the derivatives of the computa-
tional energy function E with respect to time t.

dVqk dE

d Vq k d Uqk]

where the motion equation replaces (OE/cqVijk)

A parallel algorithm for solving the 'Hip' games 99

by

d Uij k
- - - d T - / '

dE ~ dUi/k dVijk '}~ dVijk)
d t - ~'i ~-'~k \ -~ dUij~/\--~/

• (dV,
(3)

As long as the input /output function of the
processing elements obeys the nondecreasing
function, dVqk/dUqk must be positive or zero so
that dE/dt is negative or zero. Therefore the
state of the system is always guaranteed to con-
verge to the local minimum. []

We verified our parallel algorithm through sol-
ving the six problems where the size of the

checkerboard is varied from 4 to 12. The simula-
tion results are also shown and discussed in this
paper.

2. System representation

Figure 2 shows the system representation to
find the solutions in the 'Hip' game by four
players on a four-by-four checkerboard. Four
processing elements are used to describe which
player should occupy one cell on the checker-
board in this game. Generally m processing ele-
ments are used to represent m players for one
cell on the checkerboard. The total number of
required processing elements is m x n 2 for the
m-player-n-by-n-checkerboard game. One and
only one processing element among m processing
elements for one cell should have nonzero out-

Cell Coordinates j ~, 1 2 3 4

" i e/ / / /" / / / ([[D O 0 C) 1PlaP~r#12
Players

= Player
(k=2)

Output of Processing Elements

Cell (I I) (I
:Coordinates '

k=l

k=2

k=3

k=4

,2) (1,3) (4,4) x~/

I 0 0 I 0 0 0

0 1 1 0

0 0 0 0

0 0 0 0

Fig. 2. System representation for the 'Hip' game.

Checkerboard

©

100 N. Funabiki, Y. Takefuji

put to choose a player from m players to occupy
the cell on the checkerboard. The nonzero out-
put means that the corresponding player to the
processing element should place his counter on
the cell. Figure 2 shows that the cells (1, 1) and
(4,4) are occupied by the player #1, and the
cells (1, 2) and (1, 3) are occupied by the player
#2.

Figure 3 shows the general form of the viola-
tion conditions for this game. The four cells
corresponding to the four coordinates mark the
corners of a square. The kth player processing
element of the cell (i, j) should not have non-
zero output if the kth player processing elements
of the other three cells, (i + p, j + q), (i - q,
j + p) , and (i + p - q, j + p + q), have nonzero
output simultaneously. Therefore the violation
conditions are given by the following concise
function:

(i-q, j+p)

(i,j)

q, j+P+q)

(i+p, j+q)

(p , q) # (0 , 0)
1 _< i + p , j+q -< n
1 _<i-q, j+p<_n

1 -< i+p-q, j+p+q < n

Fig. 3. Violation conditions for the 'Hip' game.

2 2
P,q

(p , q) ~ (0 , 0)
l~i+p,j+q~n
l~i-q,j+p<~n

l<~i+p-q,j+p+q<-n

E+p j+q kVi-q j+p kE+p-q j+p+q k

This function is nonzero if the kth player
occupies the three corners of a square.

The motion equation of the kth player
processing element of the cell (i, j) for the
m-player-n-by-n-checkerboard game is given by:

(4)

The first term (A-term) in Eq. (5) forces one and
only one processing element to have nonzero
output for the cell (i, j) on the n-by-n checker-
board. The second term (B-term) performs the
inhibitory force. The B-term discourages the

d Uij k

dt
A 1)

r = l E jr - -

- 8 E 2
P,q

(p , q) ¢ (O , O)
l~i+p,j+q<<.<n
l <<.i-q,j +p<<.n

l<<.i+p-q,j+p+q<~n

- C g -

- q = l

+ Dh 2 Ejr
r = l

E+p j+q k E'-q j+p k E+p-q j+p+q k

(5)

A parallel algorithm for solving the "Hip' games 101

i jkth processing e lement to have nonzero output
if the kth player occupies the other three cells of
a square. The third te rm (C-term) adjusts the
number of the counters which kth player places
on the checkerboard so that each player should
place the same number of counters on the chec-
kerboard. In this equat ion each player should
place n2/m counters on the checkerboard. The
function g(x) is x if Ix[~< 3, 3 if x > 3, - 3 other-
wise. The last term (D-term) provides the hill-
climbing which allows the state of the system to
escape f rom the local minimum and to converge
to the global minimum - the solutions. The func-
tion h(x) is 1 if x = 0, 0 otherwise. A, B, C, and
D are constant coefficients.

The symmetry strategy which was given by
Temple ton is useful to obtain a solution. The
strategy can be said that all the counters should
be placed symmetrically around the center of the
checkerboard. Therefore we always make the
values of the processing elements symmetric
around the center of the checkerboard by using
the following procedure:

U,+l_~ ,+l_ jk=Ui j k f o r / = 1 n/2,

j = l n, and k = l , . . . , m . (6)

3. Parallel algorithm for the 'Hip' game

The following procedure describes the pro-
posed algorithm based on the first order Euler
method for the m-player-n-by-n-checkerboard
game. It decides which player should place his
counter on the cell of the checkerboard without
making a square by his counters.
0. Set t = 0 , A = B = C = I , D = 5 , U _ m a x = 2 0 ,

and U_min = - 2 0 .
1. The initial values of U~jk(t) for i = 1 j =

1 n, and k = 1 m are randomized
between 0 and U_min.

2. Evaluate values of Vij~(t) for i = 1 n,
j = 1 n, and k = 1 m based on the
conditional binary function.

~jk(t) = 1 if Uii~(t) > 0 and Uijk(t)

= max{ Uijr(t)} for r = 1 m

= 0 otherwise . (7)

3. Use the motion equation in Eq. (5) to com-
pute AUijk(t) for i = 1 n, j = 1 n,
and k = 1 m. If (t m o d 10) < 2 then

(m)
- A r~=, Vijr(t) AUijk(t) = - 1

- B E E
P,q

(p,q)~(0,0)
l<-i+p,j+q<~n
l < - i - q . j + p ~ n

I<~i+p-q,]+p+q<~n

-

p = | q=l

(m) + Dh ~ V~j~(t)
r=|

Vi+p i+q k(t)V,-q i+e k(t)Vi+p-q i+p+q k(t) × 3

× 3

else

(s)

102 N. Funabiki, Y. Takefuji

(m)
- A r~=l Vilr(t) A Uq~ (t) = - 1

- B E E
P,q

(p,q)~(O,O)
l<-i+p,j+q<~n
l<-i-q,j+p<.n

l~i+p-q,j+p+q<~n

- o=,

+ r t .
r= l

K" +p j+q k(t)Vi -q j+p k(t)Vi+p-q j+p+q k(t)

(9)

4. Compute Uij k (t + l) for i = l , n , j =
1 , . . . , n, and k = 1 , . . . , m based on the first
order Euler method.

Uqk(t + 1) = Uqk(t) + A Uijk(t) . (10)

5. If Ui jk (t+ l)>U max then Uiik(t+l)=
U m a x for

i = l , . . . , n , j = l n, and

k = l , . . . , m . (11)

If Uij~(t+l)<U min then Uijk(t+l)=
U_min for

i = l , . . . , n , j = l n, and

k = 1 , m . (12)

6. Use the symmetry strategy in Eq. (6).

U,+l_i,+~_jk(t) = Uq,(t) for i = 1 , . . . , n/2,

j = l , . . . , n , a n d k = l , . . . , m . (13)

7. If all conflicts are resolved then terminate this
procedure else increment t by 1 and goto step
2.

The modified motion equations in step 3 em-
pirically improve the convergence frequency to
the global minimum [5].

The simulator based on the proposed proce-
dure has been developed on a Macintosh SE/30
in order to verify our algorithm. The following
six games were simulated:

(i) Game #1: two-player game on a four-by-
four checkerboard.

(ii) Game #2: two-player game on a six-by-six
checkerboard.

(iii) Game #3: three-player game on a six-by-six
checkerboard.

(iv) Game #4: four-player game on an eight-by-
eight checkerboard.

(v) Game #5: five-player game on a ten-by-ten
checkerboard.

(vi) Game #6: six-player game on a twelve-by-
twelve checkerboard.

Figures 4 -9 show two of the solutions or the
draw game patterns for the respective games
which our simulator found. Our simulator found
several solutions in the same games from the
different initial values of Uijk(t). Table I shows
the frequency of the convergence to solutions
and the average numbers of iteration steps where
100 simulation runs were performed for each one
of the six games. Figure 10 shows the relation-
ship between the frequency and the number of
iteration steps to converge to the solutions in
Game #3 and Game #4.

A parallel algorithm for solving the 'Hip" games 103 o,o>o
(a) A Solution #1

• 0
0 0
0 0
0 •

(b) A Solution #2

Fig. 4. Simulation results for game #1. Fig.

O O 0 1 O O 0
O 0 0 1 0 0 0
o o o l o o o
o o o l o o o
O 0 0 1 0 O O
O 0 0 0 0 0

(a) A S o l . o n #1

0 0 0 0 0 0
Q O O O O Q
© O 0 0 0 0
O 0 0 0 0 0
O O O O 0 0
O 0 0 0 0 0

(b) A S o l . o n
6. Simulation results mr game #3.

0
O
0
O
O
O

O O •
O 0 <
O 0 •
O 0 (
O 0 •
O 0 (

(a) A Solution #1

O
0
O
O
O
0

,o o
O 0 • o.!o
O 0 •
O 0 0
O 0 •

(b) A Solution

Fig. 5. Simulation results for game #2. Fig.

0 NOOl@I i]
Q [-10I-1! 8 8>
0 I--100 O
o ©oDo l o
o oDo@l o
0 0 0 0 ~ O
@ 1-11-10 •
[] @O0 O

(a) A Solution #1

o.o
o ~lo [] Dio

01[-1@ OoO
• o"
@ OIf-lrl@ E]
@ OlO o1-1r-1

(b) A Solution #2

7. Simulation results for game #4.

104 N. Funabiki, Y. Takefuji

0
©
0

[]
[]

0
[]

O O
O@
O~1

@@
E3@

- 1 0
~E3

O O
@E3
O O
O@
@[3
O O
O O
@1-1
O~1

~@
~ O
E3@
O O
O O
F3@
© O
D O
-1@
0 [3

E3BS ~1
OE3Q
E3~O
@E3~
@ @ ~
BS@O
BSOO
~ O O
O O ©
BSE3O

(a) A Solution #1

D O O O O ~ @ D O O O 0
O0000DODOOOO
~ODIOI®I~I®IOIOI®IOIQI
I~DIO~IOIDIOI~IOIO • 0
101010~IDIOIOI~IOIDIQI~I "OOllOl'l'OlO0"
0 0 0 O D O D D O D O
O D ~ O Q O O D © O © O
O~OO@O~OO©@@
@ O ~ O @ ~ @ ~ O ~
O O 0 ~ 0 0 ~ 0 ~
~ O O O ~ @ ~ O O O O @

(a) A Solution #I

@O OF1~1
O @ O ~ I O
@ O O @ O
~1@ OE3@
~ 1 @ ~ O O
E3@~E3E3
©E30@E3
OOFT@@
O ~ E 3 ~ l
o o r - I O 0

O O I - I O 0

@@:E3OO
ssioso
D31 ors
O O ~ @ ~
~13~O©BS
O © O O @
O ~ O @ O
~1-3OO@

(b) A Solution #2

Fig. 8. Simulation results for game #5.

OOO~@CDCD-D
ODO F - - I C O -
• OlOlOlE • o c - •
DOOIIID 3 O 3 0 3
E:]O0100 - B___ - 3 O
l O D l ~ S l t - D - o
Ol®lOlmlD -~ s s D -
OlOIOlOII3 [] 's 3 • 0
I®IOI©IOIOIOIOD • 0
OO0[-1OOO ® D ® O
,Ol -1OO OI-I~IO O Q ,
• • [] [] [] 0 ~lOl~l~lOIOI

(b) A Solution #2

Fig. 9. Simulation results for game #6.

Table 1
Summary of simulation results.

Game no,

Average
iteration steps to

solutions

Convergence
frequency to

solutions

Game #1 25.6 85%
Game #2 85.2 27%
Game #3 65.8 87%
Game #4 128.7 75%
Game #5 147.5 30%
Game #6 234.1 10%

4. Conclusion

This paper proposed the parallel algorithm for
solving both the normal 'Hip' games and the
modified 'Hip ' games. It uses m × n 2 processing
elements for the m - p l a y e r - n - b y - n checkerboard
games. Based on the algorithm the frequency
that the state of the system converged to a
solution was 10% or more and the average num-
bers of iteration steps were in a range of 25.6 to

A parallel algorithm for soh, ing the "Hip' games 105

40 -

35

30 -

25 -

20 -

15 -

10 -

5 -

0
20

~ I I I ~ ''I, ~
l l l i l l l l l W l l l i l l l l l l l

60 100 140 180 220 260 300 340 380 420 460 500

the number of i~eta1~on steps

(a) The Garrm #3

40 -

35 -

30

e

25

20

15

10

5

0 i i , , , , , , , , , , , i i i | i | i i i i , i |

20 60 I00 140 180 220 260 300 340 380 420 460 500

the number of i~ra~on s~eps

(b) The Game #4

Fig. 10. The relationship between the frequency and the number of iteration steps to converge to the solutions in games #3 and
#4.

234.1 in our simulation. With a slight modifica-
tion the proposed algorithm can be used for
finding Ramsey graphs which have been exten-
sively studied by mathematicians [16, 17]. The
algorithm for the Ramsey graphs is under inves-
tigation.

References

[1] M. Gardner, New Mathematical Diversions from Sci-
entific American (University of Chicago Press, 1983).

[2] H. Langman, Play Mathematics (Hafner, New York,
1962).

[3] J.J. Hopfield and D.W. Tank, Neural computation of

106 N. Funabiki, Y. Takefuji

decisions in optimization problems, Biol. Cybernet. 52
(1985) 141-152.

[4] Y. Takefuji and K.C. Lee, A near-optimum parallel
planarization algorithm, Science 245 (Sept. 1989) 1221-
1223.

[5] Y. Takefuji and K.C. Lee, A parallel algorithm for tiling
problems, IEEE Trans. Neural Networks 1 (1) (1990)
143-145.

[6] Y. Takefuji, C.W. Lin and K.C. Lee, A parallel al-
gorithm for estimating the secondary structure in
ribonucleic acids, Biol. Cybernet. 63 (5) (1990) 337-
340.

[7] Y. Takefuji, L.L. Chert, K.C. Lee and J. Huffman,
Parallel algorithms for finding a near-maximum in-
dependent set of a circle graph, IEEE Trans. Neural
Networks 1 (3) (1990) 263-267.

[8] Y. Takcfuji and K.C. Lee, A super parallel sorting
algorithm based on neural networks, IEEE Trans. Cir-
cuits and Systems 37 (11) (1990) 1425-1429.

[9] Y. Takefuji and K.C. Lee, Artificial neural networks for
four-coloring map problems and K-coiorability prob-
lems, 1EEE Trans. Circuits and Systems 38 (3) (1991)
326-333.

[10] N. Funabiki and Y. Takefuji, A parallel algorithm for
spare allocation problems, to appear in IEEE Trans.
Reliability.

[11] N. Funabiki and Y. Takefuji, A parallel algorithm for
channel routing problems, to appear in IEEE Trans.
CAD.

[12] N. Funabiki and Y. Takefuji, A parallel algorithm for
traffic control problems in TDM hierarchical switching
systems, to appear in IEEE Trans. Commun.

[13] N. Funabiki and Y. Takefuji, A parallel algorithm for
traffic control problems in three-stage connecting net-
works, to appear in J. Parallel Distrib. Comput.

[14] T. Kurokawa et al., CMOS layout design of the hy-
steresis McCulloch-Pitts neuron, Electronics Lett. 26
(25) (1990) 2093-2095.

[15] W.S. McCulloch and W,H. Pitts, A logical calculus of
ideas immanent in nervous activity, Bull. Math. Bio-
physics 5 (1943) 115-133.

[16] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ram-
sey theory, Scientific American (July 1990) 112-117.

[17] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ram-
sey Theory (Wiley, New York, 1980 and 1990).

Mr. Funabiki is a graduate student of electric engineering at
Case Western Reserve University working toward the PhD
degree in electrical engineering. He is also working in
Sumitomo Metal Ind., Ltd. (Japan). He received his BS in
Mathematical Engineering and Information Physics from the
University of Tokyo (Japan) in 1984. His research interests
include channel routing problems, traffic control problems in
three-stage/multistage connecting networks, time slot assign-
ment problems in TDM hierarchical switching systems, and
broadcast scheduling problems. He is a student member of
the IEEE Computer Society and the American Association
for the Advancement of Science.

Dr. Takefuji is an assistant professor of electrical en/~ineering
at Case Western Reserve University. Before joimng Case
Western in 1988, he taught at the University of South Florida
and the University of South Carolina. He received his BS
(1978), MS (1980), and PhD (1983) in Electrical Engineering
from Keio University (Japan). His current research interests
focus on neural network parallel computing for solving real-
world problems. He is also interested in VLSI applications
and silicon architecture. He received the National Science
Foundation/Research Initiation Award in 1989 and is an NSF
advisory panelist. A member of the IEEE Computer Society,
ACM, International Neural Network Society, and American
Association for the Advancement of Science, he received the
Information Processing Society of Japan's best paper award
in 1980. He coauthored two books, Digital Circuits and
Neural Network Computing (in Japanese). He will publish a
new book entitled Neural Network Parallel Computing in
1991. He is an editor of the Journal of Neural Network
Computing and an associate editor of IEEE Trans. on Neural
Networks. He has published more than 70 technical papers.

