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Artificial Neural Networks for Four-Coloring
Map Problems and K-Colorability Problems

Yoshiyasu Takefuji and Kuo Chun Lee

Abstract —The computational energy is presented for solving a four-
coloring map problem. The map-coloring problem is defined that one
wants to color the regions of a map in such a way that no two adjacent
regions (that is, regions sharing some common boundary) are of the
same color. This paper presents a parallel algorithm based on the
McCulloch-Pitts binary neuron model and the Hopfield neural network.
It is shown that the computational energy is always guaranteed to
monotonically decrease with the Newton equation. A 4 X n neural array
is used to color a map of n regions where each neuron as a processing
element performs the proposed Newton equation. The capability of our
system is demonstrated through a large number of simulation runs. The
parallel algorithm is extended for solving the K -colorability problem.

1. INTRODUCTION

In 1943, mathematical models based on biological computa-
tion were proposed by McCulloch and Pitts [1]. They attempted
to take advantage of the elegant natural biological computation
in the brains of animals and human beings. Hebb presented the
learning theory for realizing the associative memory where the
strengths of the existing synaptic connections between neurons
are modified by the input pattern [2]. Widrow at Stanford
University demonstrated adaptive switching circuits in 1960 [3].
In 1961, Rosenblatt at Cornell University presented perceptrons
and the theory of brain mechanisms in his book [4]. In 1969,
Minsky and Papert at MIT showed the limitation of perceptrons
in their book [5]. Negative results against the artificial neural
network computing had caused less support and interest from
governments /industries and consequently shrank the scale of
neural network study and the number of investigators. However,
a small number of researchers such as Amari, Cooper,
Fukushima, and Grossberg studied the neural network comput-
ing during the 1960’s and 1970’s. In the 1970’s, Anderson and
Kohonen developed mathematical models of associative mem-
ory. The new discovery in neurobiology and the explosive inter-
est in parallel computation along with the inexpensive VLSI
technology have caused a dramatic resurgence.

The mathematical model of the artificial neural network con-
sists of two components: neurons and synaptic links. The output
signal transmitted from a neuron propagates to other neurons
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through the synaptic links. The state of the input signal of a
neuron is determined by the linear sum of weighted input
signals from the other neurons where the respective weight
is the strength of the synaptic links. In our parallel algorithm
the McCulloch-Pitts binary neuron model is used. The McCul-
loch-Pitts input/output function is given by V;= f(U) =1, if
U, > 0 and 0 otherwise where V; and U, are the output and input
of the ith neuron, respectively. U, is given by U =X, W, V,
where W,; is the strength of the synaptic link from the kth
neuron to the ith neuron. The synaptic links and the strength of
the synaptic links are given by the motion equation or the
Newton equation.

The first neural network for combinatorial optimization prob-
lems was introduced by Hopfield and Tank in 1985 [6]. They use
the predefined energy function E, which follows the quadratic
form

E=

i

N

M=

N
Y GV +
1j=1

where V, is the output of the /th neuron and G;; is the
conductance between the ith and the jth neurons. Note that I;
is the constant bias of the ith neuron.

Hopfield gives the motion equation of the ith neuron [6}:

du; U oE
=TT w (2
t T oV
where the output follows the continuous nondecreasing function
(sigmoid):
1
V= f(U) = 5 (tanh (A,U) +1) 3)
where A, is the gain of the sigmoid function.

Wilson and Pawley strongly criticized the Hopfield and Tank
neural network for the travelling salesman problem [7]. Unfortu-
nately, Wilson and Pawley did not know what causes the prob-
lem. The use of the decay term (—U; /7) in (2) sometimes
increases the computational energy. The following shows why
the use of the decay term may increase the computational
energy.

Proof: Consider the derivatives of the computational energy
E with respect to time 7:

dE dv, dE
=L

i

E v U
e v, T dt roodt )

i

aq;
where dE /dV; is replaced by ( - W) from (2)
T

ay av; dy;

=_2___ e

dr 7 dt dt
dv, U, dy, dv;\ (dU,
T ~a o - dta’U,(dt)

av, y; dv;\(dU;\?
~dr T ;(dU,)( dr ) ’
The first term — X (dV; /dt XU, / 7) is positive, negative, or zero.
The second term — L,(dV; /dUXdU; /dt)? is always negative or
zero, because the output V; = f(U}) is a nondecreasing function.
The following condition can be true: —X(dV,/dtXU, /7)—
YV, /dUXdU; /dt)* > 0 only if one of the following condi-
tions is satisfied: (U;>0 and (dV;/dt)<0) or (U;<0 and
(dV, /dt)>0). Under such a condition the derivatives of E with
respect to time ¢ may be positive; dE /dt > 0. Q.E.D.
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It is easy to show that the Newton equation always forces the
energy function to decrease monotonically. The change of the
input state of the ith neuron is given by the partial derivatives of
the computational energy E with respect to the output of the

ith neuron where E is an n-variable function: EW, V-,V
It is given by
dy, E(V, Yy, W)
—_—=—— (4)
dt av,

Whatever the computational energy function E is given, the
Newton equations force it to monotonically decrease. The fol-
lowing proof shows that the Newton equations force the state of
the system to converge to the local minimum [8].

Proof: Consider the derivatives of the computational energy
function E with respect to time ¢:

dE dv, dE
T raw
av,( du,
-l (_7)’
i t t

dy;

i

where the Newton equation replaces dE /dV; by ( - 7)

du, dv;\ ( du,
Ll @ (7)

> dv;\ (dU\? 0
= — Il — <
~\du [\ de |

As long as the input/output function of the neurons obeys
the continuous nondecreasing function, dV; /dU; must be posi-
tive so that dE /dt is negative or zero. Therefore, the state of

the system is always guaranteed to converge to the local mini-
mum. Q.E.D.

In the network the state of each neuron is influenced by the
states of itself and other neurons. The strength of synaptic
interconnections actually determines the motion of the neurody-
namical system. The Newton equation of the neurons describes
the neurodynamics on how the state of the corresponding neu-
ron will be influenced by the other neurons. It is important to
note that one of the significant advantages in neural network
parallel computing lies in parallel asynchronization. Each neu-
ron communicates with other neurons without any clock or
handshaking synchronization. The state of each neuron will be
asynchronously updated by observing the neighboring states of
other neurons linked to it.

The following shows why the Newton equation of the discrete
McCulloch-Pitts binary neurons monotonically decreases the
computational energy function.

Proof: Consider the derivatives of the computational energy
E with respect to time ¢.

dE dV, dE
de T dt av,
dv, duy; dU;
=IZI(_W)’ where dE /dV isreplacedby(—?)

du; av,\ ( du
=2 M—U,(?)

--z(@) (%)

—— T
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Let dU, /dt be U(t + At)— U(1). Let dV; /dU. be (V(t + At)—
Vi) /(ULt + At)— UL)). Tt is necessary and sufficient to con-
sider the following seven cases:

D UG+ A >Ue), Ut + At) <0

2) Ut + A1) > U(r), UGt + At) > 0, and ULt) < 0
3) Ut + A > Ue), Ut + At)> 0, and U(t) > 0
D UG+ A)<U), Ut + At)> 0

5) Ut + Ar) <U(t), Ut + At) <0, and U(t) > 0
6) U+ At)<U(1), Ut + A1) <0, and U(1) <0
7) Ut + A) =U(e).

If the condition 7) is satisfied, then dU, / dt must be zero so that
dE /dt = 0. If condition 1), 3), 4), or 6) is satisfied, then dV; /dU,
must be zero, because dV; /dU, = (V (¢ + A1) -V (¢) /(U(t + At)
— U{#) = 0/(nonzero number), so that dE /dt = 0. If condition
2) is satisfied, then dV; /dU; must be positive, because dV, / dU,
=WVt + A= V() /Ut + At)— U(t) =1 /(positive number),
so that dE/dr <0. If condition 5) is satisfied, then dV,/dU,
must again be positive, because dV;/dU = (V(t + At)—
V() /Ut + A1) — UA2)) = — 1 /(negative number), so that
dE /dt <0.

We can conclude that the energy function E monotonically
decreases as long as the Newton equation of the binary neurons
is given by dU, /dt = — dE / V. Q.E.D.

II. Four-CoLORING MaP PROBLEMS

A map maker colors adjacent countries with different colors
so that they may be easily distinguished. This is not a problem as
long as one has a large number of colors. However, it is more
difficult with a constraint that one must use the minimum
number of colors required for a given map. It is still easy to
color a map with a small number of regions. In the early 1850’s,
Francis Guthrie was interested in this problem, and he brought
it to the attention of Augustus De Morgan. Since then many
mathematicians, including Arthur Kempe, Peter Tait, Percy
Heawood, and others tried to prove the problem that any planar
simple graph can be colored with four colors. A four-color
problem is defined that one wants to color the regions of a map
in such a way that no two adjacent regions (that is, regions
sharing some common boundary) are of the same color. In
August 1976, Appel and Haken presented their work to mem-
bers of the American Mathematical Society [9]. They showed a
computer-aided proof of the four-color problem. However, their
coloring was based on the sequential method so that it took
many hours to solve a large problem. Their computation time
may be proportional to O(n?) where n is the number of regions.

Few parallel algorithms have been reported. Dahl [10],
Moopenn et al. [15], and Thakoor et al. [16] have presented the
first neural network for map K-colorability problems [10]. In our
algorithm, the four-color problem is solved by a 4Xn two-
dimensional neural array where n is the number of regions to be
colored.

Four colors can be simply expressed by four neurons. For
example, red, yellow, blue, and green are represented by 1000,
0100, 0010, and 0001, respectively. A single region requires four
neurons for the single-color assignment. Therefore, a 4Xn
two-dimensional neural array is needed for coloring n regions of
a map. For example, five regions are colored by four colors as
shown in Fig. 1. The neural representation for the five-region
map problem is given in Fig. 2 where a 4Xx35 neural array is
used. Fig. 3 shows the adjacency matrix of the five-region map,
which gives the boundary information between regions.

In order to consider in such a way that no two adjacent
regions are of the same color, the basic energy function is given
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Fig. 1.

A five-region map and a four-colored map.
Region Number
2 3 4 5

"

Fig. 2. Neural representation for the five-region map.

Four-Color

1 2 3 4 5

1 11111
201 11
211 11
41111 1
2 11

Fig. 3. An adjacency matrix of the map.
by

.
T2

4

Y dyyViyi (5)
y=1i=1
Y*X
where dyy is 1 if regions X and Y are adjacent to each other,
and 0 otherwise. Note that 4 and B are constant. The adja-
cency matrix is an n X n array where d, is a single element.
Note that V, is the output of the ith neuron in the X region.
The first term corresponds to the column constraint in the
neural array which forces one and only one neuron’s output to
be nonzero. The last term describes the boundary violation
between regions. If X and Y regions have a common boundary
(dyy=1), then X and Y regions should not have the same
color i.

The Newton equation of the ith color of the Xth region is
given by

dUy,  OE ]
i Wy, (©)

Equations (5) and (6) generate the equation of the ith color of
the X'th region by

dUy;

a -4

4 n

Z VX'l)B Z dxyVyi. (7)
j=1 y=1
Y#X

We have introduced the hill-climbing term, which allows the

state of the system to escape from the local minimum and to

converge to the global minimum. The hill-climbing term has

been successfully used for solving graph planarization problems

T

Fig. 4. A 48-state map of the continental United States.

[11], tiling problems [12], and secondary structure prediction
problems in ribonucleic acids [13]. The final Newton equation of
the ith color of the X'th region is given by

dU, 4 : -
7:—/1 Y Vy—1|-B dyyVyi ¥ dyg
j=1 Y=1 K=1
VX
n n

4 n Z Z dXYdYK
+C-h( Yrlla X dyg +C, =2 ¥=t 8

j=1 K=1 Y dxk

The coefficient of the second term is normalized. Note that C,
Cy, and C, are constant. The last term is the hill-climbing term
where h(x) is 1 if x=0, and 0 otherwise. It performs the
excitatory force only when all of Vy; are zeros. The hill-climbing
term allows the state of the system to escape from the local
minimum and to converge to the global minimum.

III. THE ALGORITHM

The following procedure describes the proposed algorithm to
the four-coloring problem.

0) Set t=0, At=1,and A=B=C=C,=Cy=1.

1) The initial values of U,(t) where X=1,---,n and i=
1,2,3,4 are randomized.

2) Evaluate values of V(1) based on the binary function
where X =1,---,nand i=1,2,3,4.

Vyi(1) = f(Uyi(1)) ={]’ if Uy (1) >0

0, otherwise.

3) Use the motion equation in (3) to compute AU, ().

AU (1) =~ A( 5 Vx,m—l)

i=1

n

n
=B Y dyyVyi(1) ¥ dyg +Ch
Y=1 K=1

Y£X

4

Z VX)(I)

j=1

n n
Y X dyydyg
dyp +C, K1Y=

K=1

M=

C,
K

Il

for X=1,---,nand i=1,2,3,4.
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Fig. 5. (a) The convergence of the 48-state U.S. map neural network to a four-color solution. (a) At the intermediate state
of 192 neurons after the first iteration. (b) At the intermediate state of 192 neurons after the tenth iteration. (¢) At the
intermediate state of 192 neurons after the 30th iteration. (d) At the final state of 192 neurons after the 35th neuron. (The
linear dimension of each rectangle is proportional to the value of AU, U;, or V,;. Black and white rectangles indicate

positive and negative, respectively.)

4) Compute Uy,(t +1) using the first-order Euler method:
Uy (t +1) = Uy (t) + AUy,(t) At,
for X=1,"--,nand i=1,2,3,4.

5) Increment ¢ by 1.'Set C=5 if ((+ +15)mod25) <5 and
£ > 60, 1 otherwise. If at least onc among AUy (1), AU, ,(¢),
AUy;(t), and AUy,(¢) is equal to zero for X =1,---,n,
then terminate the procedure; else go to step 2.

IV. SimuraTION RESULTS

Fig. 4 shows the U.S. continental map, which consists of 48
states where the adjacency matrix is given by a 48 x 48 array.
Fig. 5(a), (b), (¢), and (d) show the convergence of the 48-state
U.S. map neural network to a four-color solution, respectively.
Fig. 6 depicts the solution that is decoded from the state of 192
neurons in Fig. 5(d). Fig. 7 describes one of the solutions for a
210-country map four-coloring problem where the problem is

taken from the example of Appel and Haken’s experiments. The
state of the system always converged to the global minimum as
far as we have observed through more than 1000 simulation
runs. Fig. 8 shows the frequency versus the number of iteration
steps using several hundred simulation runs in the 210-country
map problem. The average number of iteration steps is 820. Fig.
9 shows one of the solutions for a 211-country map problem
where the 210-country is surrounded by ocean. The number of
iteration steps for the 211-country map problem is similar to the
result of the 210-country map problem. Fig. 10 shows one of the
solutions for a 430-country map problem. Fig. 11 depicts the
frequency versus the number of iteration steps using several
hundred simulation runs for the 430-country map problem. The
average number of iteration steps is 1000. Figs. 8 and 11 indicate
that the problem size does not strongly reflect the number of
iteration steps.

Through more than 1000 sets of simulation runs, we have
observed that the problem size does not strongly reflect the
number of iteration steps to converge to the global minimum.
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Fig. 6. The solution of the 48-state U.S. map four-color problem,
illustrating how the final state V,; in Fig. 5(d) is decoded into a solution. Fig. 7. The solution of the 210-country map problem.
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Fig. 8. The relationship between frequency and the number of itera- Fig. 11.
tion steps to converge to the global minimum for the 210-country map
problem.

The relationship between frequency and the number of itera-
tion steps to converge to global minimum for the 430-country map
problem.

Vix Vax Vi Vin Vi
L L L pY
B 2 R RaZ mié
Fig. 9. The solution of the 211-country map problem (210-country is th,f'" Ll‘tfln
surrounded by white-colored ocean).

Fig. 13. A circuit diagram of the four-color neural network.

The proposed scaling method for the coefficient in the motion
equation is quite effective, which allows the state of the system
to escape from the local minimum and to converge to the global
minimum.

V. K-CoLORABILITY PROBLEM

The Newton equation in (8) is modified for the three-color
Fig. 10. The solution of the 430-country map problem. map problem. For the three-color map problem, a 3 n neural
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the ith neuron

=fUD

Fig. 14. An analog circuit of the ith neuron.

array is prepared. It is given by

aUy; 3 n n
_dt_=_A ZVXiﬂl 7BZdXYVYIZdYK
j=1 y=1 K=1
Y*X

n
Z dXYdYK
dyg+C, XL ——— 1 (9)
1

dxx

3
+C-h( Y VX,) C,

ji=1

T
TM‘TM:

1

Fig. 12 shows three-colorability for the 48-state U.S. map
problem. Our simulation result shows that there are two conflict
states (California and West Virginia) which cannot be colored.
Our simulator always indicates where the conflicts exist in a
map: a conflict around California and the other conflict around
West Virginia. In general, an m X n neural array is required for
the m-color problem where 7 is the number of regions. K-col-
orability problems belong to the NP-complete problem [14]. The
Newton equation of the ith color of the Xth region for the
m-color-n-region problem is given by

dUXi m n n
¢ =—4 Z VXj‘l -B Z dxyVvi Z dyk
i=1 K=1

m n
+C‘h( Y V,,j) C, ¥ dyg +C LA (10)
i= k=1 Y dxk
K=1

VI. ANaLOG NEURAL NETWORK

Fig. 13 shows the analog neural network where each neuron
performs the Newton equation given by dU; / dt =—93E /dV;. In
Fig. 14 the detailed neuron circuit is described where the
operational amplifier on the first stage sums all of inputs which
satisfies the following equation:

2

n V. V.
j ix

E __+

21 Rij R

j=

L
dr

- (11)

ix

The derivatives of the four-color computational energy E with
respect to the pth output is given by

du,
di

/12
==Y GV, 1, (12)
g=1

h(z vxj)

—

-V,

A

V)\l

Vi

vx]

) Vi Vi Ve
- Rl

Fig. 15. The circuit of the ith neuron in the X state for the non-
quadratic function.

where p and g are given by (X —1)+i) and @Y -D+j),
respectively. G, is given by

G, = Abyy(1-8,)+ Béxy + Cdyyd,;(1-8xy)

_f1, ifr=s
where 3, = {0, otherwise. (13)

From (11) and (12), G,,, and I,, in (12) are determined by R /R;;
and RV, /R;;, respectively.

The second operational amplifier in Fig. 14 performs integra-
tion of dU, /dt, which is given by the following equation:

U, Lo,
P=— —— | = | dt.
' Ricif( d’)

The third operational amplifier generates U, U;=-U/. The
last component must perform a nondecreasing function such as
the sigmoid or the binary function.

The hill-climbing term in the Newton equation can be easily
implemented by the circuit described in Fig. 15 when binary
neurons are used. If and only if V=V, =V,3=V.a=0, =V,
will be given to the input of the ith color of the X state through
the analog switch and the resistor R,; otherwise, the circuit of
the resistor will be cut off.

(14)

VII. CoNCLUSION

We introduced the computational energy function for the
four-color map problem and the k-color map problem. It was
proven that the state of the system with the Newton equation is
guaranteed to converge to the local minimum. With the hill-
climbing term, the proposed Newton equation forces the state of
the system to escape from the local minimum and to converge to
the global minimum. A large number of simulation runs was
performed to verify our algorithm. The simulation result sup-

-
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ports that the problem size does not influence the number of
iteration steps. The analog circuit for the four-color map prob-
lem was presented in this paper.
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On the Largest Modulus of Polynomial Zeros
Ezra Zecheb

Abstract —A result by Cauchy is extended in two directions, providing
two bounds for the moduli of the zeros of a polynomial. One of these
pertains to real polynomials, while the other pertains to polynomials
with complex coefficients.

I. INTRODUCTION

The problem of the relation between the zeros of a polyno-
mial and its coefficients is a very old one, but continuously vital.
Both facts can be deduced by glancing at the references in the

Manuscript received March 23, 1990. This paper was recommended
by Associate Editor P. H. Bauer.

E. Zeheb is with the Electrical Engineering Department, Technion,
Israel Institute of Technology, Haifa 32000, Israel.

IEEE Log Number 9041766.

comprehensive book by Marden [1] and by noticing the abun-
dance of recent publications on the subject. The relation be-
tween this problem and the analysis, design, and stability consid-
erations of engineering systems is well known. In addition to the
classic results by Routh, Hurwitz, Hermite, Schur-Cohn, and
Jury—Marden, which provide necessary and sufficient conditions
for stability, there arc numerous other such conditions or neces-
sary conditions or sufficient conditions. (See references in [2].)
The need for simple necessary conditions and for simple suffi-
cient conditions is important where the design calls for quick
assessment of stability, or stability margins, sometimes in many
iterative steps. It becomes particularly important where multidi-
mensional systems (related to multivariable polynomials) are
concerned. Here, the “dimensionality curse” almost prevents
the use of necessary and sufficient conditions. For but a few
recent necessary or sufficient conditions, or simple necessary
and sufficient conditions for special cases, see [3]-[13].!

In this note we extend a result by Cauchy [14] in two direc-
tions, providing two circular bounds for the zeros of a polyno-
mial.

II. A BounD FOR THE ZEROS OF A REAL PoLyNOMIAL
Let

n—1

P(z)=z"+ ) a;2', a;,€R
i=0

0}
be a real polynomial. A special case® of a result due to Cauchy
[14] states that all the zeros of P(z) lie in the circle

lzl <1+ A (2)
where

A= max {|a,l}, 3)

The following is an extension to this result.
Theorem 1: All the zeros of P(z) in (1) lie in the circle

Izl <1+max{A,} 4)
where
ﬁ%% L,j=0,-,n;j>i (5.1)
a,21, a_ 20 (5.2)
Remarks:

1) In (5.1), the understanding is that i and j take on the
values 0,---,n (j> i), including values where coefficients
may be zero (nonexisting), but excluding values where both
a;=a;=0.

2) Thouéh Theorem 1 cannaot be used to ascertain stability of
discrete systems, it can be used to get a quick “feeling”
about stability or instability of such a system. Other results
of this type are given in [15]-[17].

"It is almost impossible, and certainly not intended, .to provide a
comprehensive list.
Cauchy’s result pertains to complex coefficients a; € C as well.
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