Databases and Cell-
Selection Algorithms for
VLSI Cell Libraries

Simon Y. Foo, Florida State University/Florida A&M University

Yoshiyasu Takefuji, Case Western Reserve University

esigning a system with library
D cells resembles putting one to-

gether with off-the-shelf vendor
ICs. Library cells have different specifica-
tions ranging from I/O buffer options to
internal gates with varying degrees of drive
capability. For example, a function can be
implemented in various structures, with a
choice of buffers and 1/O port locations.
These essential implementation alterna-
tives allow designers to explore new chip
architectures using different cell structures
with varying design constraints, such as
speed, chip area, and power consumption.

As the complexity of VLSI circuits con-
tinues to grow, the need for a common,
shared cell library is becoming inevitable.
This is particularly true because of the
diverse technologies that have evolved
during the computer age — for example,
the bipolar junction transistor (BJT), n-
channel metal-oxide semiconductor
(NMOS), complementary MOS (CMOS),
gallium arsenide (GaAs), and bipolar MOS
(BiMOS).

Bipolar technology, particularly the
advanced low-power Schottky (ALS) se-
ries, is still very popular due to its very
high-speed switching capability (as in the
case of emitter-coupled-logic (ECL)) and
the gradual reduction in power consump-
tion due to improved processing tech-
niques. MOS technology is most appropri-
ate for prototyping VLSI circuits due to its
high-density packing capability, relatively

18

This framework for
capturing design data is
based on semantic
networks. It is well
suited for application-
specific ICs, yet general
enough for other CAD/
CAM environments.

simple processing steps, and low power
consumption (as in the case of CMOS).
GaAs technology is used primarily in mili-
tary applications due to its extremely high-
speed switching, high temperature opera-
tion, low internal power dissipation, and
antiradiation properties. But, as improved
GaAS chip fabrication processes bring
costs down, commercial applications will
become feasible.

Recently, processes have been success-
fully mixed on a single silicon wafer — for

0018-9162/90/0200-0018$01.00 © 1990 IEEE

example, BICMOS technology, where the
goal is to approach the high-speed switch-
ing of BJT and low power consumption of
CMOS. To have the greatest possible util-
ity, a shared cell library will allow the
complete spectrum of functions, imple-
mentation alternatives, and process tech-
nologies.

Issues

Although there has been considerable
interest in using commercial database
management systems for managing VLSI
CAD data, the complex nature of VLSI
design limits their suitability. Most gen-
eral-purpose DBMSs are simply too slow,
expensive, and inefficient for VLSI CAD
applications.' Thus, current research on
design data management in CAD environ-
ments focuses on extensions or modifica-
tions to support

(1) efficient spatial searching,

(2) design hierarchies and multilevel
representations,

(3) design alternatives and version
control,

(4) interface to simulation tools,

(5) common interface between cell li-
braries from different IC vendors,
and

(6) efficient cell selection based on
given design constraints.

COMPUTER



Spatial searching. In human-machine
design interactions, the human verification
process depends on machine spatial
searching to display selected portions of
the VLSI design. Efficient spatial search-
ing is essential to high performance and
fast turnaround. Popular layout editors,
such as UC Berkeley’s Kic and Magic, use
a geographic bin structure for spatial in-
dexing. Existing commercial DBMSs do
not support such capabilities and, conse-
quently, must rely on exhaustive search.

Design hierarchies. Most CAD envi-
ronments require hierarchical levels of
abstraction. Typically, VLSI designs can
be described at the functional, logical, cir-
cuit, and layout levels. System architects,
operating at the top level in the design
hierarchy, rarely work with transistors and
device models; at the bottom level, layout
experts hardly ever access system-level
descriptions. However, these tasks must be
well coordinated by a group manager
supervising the entire design process from
concept to silicon.

Figure 1 shows a typical flow of opera-
tions in an IC design cycle based on a top-
down methodology. Behavioral represen-
tations, in text or equation form, describe a
circuit’s function. For example, proce-
dural descriptions, such as “If clock is high
then increment counter,” and Boolean
expressions, such as “Y = !A + B,” are
functional representations; they do not
specify details about implementation.
Structural representations describe the
composition of circuits in terms of cells
(components) and interconnections among
components. Such descriptions are usually
hierarchical due to the composite nature of
VLSI circuits. Block diagrams, circuit
schematics, and netlists of logic gates are
typical examples of structural descrip-
tions. Physical representations show the
circuit’s geometric layout on semiconduc-
tor layers (polysilicon, diffusion, etc.) but
do not convey information about function-
ality. Hence, a snapshot of the design pro-
cess at each level of abstraction requires a
multilevel representation.

Version control. To achieve fast turn-
around (rapid prototyping) of high-per-
formance VLSI chips, it’s often desirable
to consider many alternative designs.
Much of VLSI design is evolutionary or
exploratory, so the database must support
design versions and alternatives. Versions
are improvements or modifications to a
design object, while alternatives are differ-
ent implementations of the same object

February 1990

Requirements
Design specification
Specification
Functional design
Behavioral Logic
representation ogic
simulation
Logic design
Structural Circuit
representation analysis
Circuit design
Structural .
representation Extraction and
verification
Physical design
Physical
representation
Fabrication

Figure 1. Phases of an IC design system based on a top-down methodology.

with varying performance characteristics.
For example, the process of partitioning or
synthesizing a function into a structure of
components is not unique; usually several
alternatives can be considered. Consider
the following alternatives: the next-state
function in a control unit can be imple-
mented as a one-way or two-way branch;

multiple inputs to a functional unit can be
made via a bus or a multiplexer; an adder
can be designed as a ripple-carry, carry-
save, or carry-look-ahead adder; a digital
IC chip can use a one- or two-phase clock-
ing scheme; I/O ports can be on different
sides of a cell; a cell layout can have differ-
ent aspect ratios of transistors, and so forth.

19



Tool i Tool j
4 . Interface (i, j)
]
Database i Database j
V.
Interface (i.k ) Interface (j,k )
Tool k
Database k
(a)
Tool 1 [ . Tool n
Standard tool interfaces
Common database
(b)

Figure 2. Contrasting CAD systems: (a) independent nonstandard; (b) inte-

grated.

Tool interface. Besides representing
domain-specific data, a dedicated VLSI
database system should interface with
other CAD tools. There is a need to repre-
sent cell specifications/characteristics ex-
tracted from circuit simulators (such as UC
Berkeley’s SPICE (Simulation Program
with Integrated Circuit Emphasis)) and
timing analyzers (such as UC Berkeley’s
Crystal) in a common database. Currently,
simulations are performed independently,
and the results are loosely organized in a
rather ad hoc manner. UC Berkeley’s Oct
tools exemplify recent attempts to solve
this problem. The Oct package includes an
object-oriented database manager for

20

VLSICAD and interfaces with other popu-
lar VLSI tools readily available to univer-
sities.

Library interface. Sharing cell librar-
ies helps prevent duplicate development
efforts and promotes exchange of ideas for
new cell architectures. Recent attempts
include an NMOS library? and a CMOS3
(three-micron CMOS technology) cell li-
brary® consisting of contributions from
various sources. The fabricated cells are
functionally tested and characterized, then
catalogued in a manner similar to IC data
books. However, differences in cell speci-
fications, from I/O-buffer options to inter-

nal gates, have often discouraged the shar-
ing of cell libraries.

A standard format for documenting cells
or a common interface for interlibrary
communications is needed so that IC de-
signers can concentrate on the design
phase. One solution is offered by design
languages, such as AHPL, that formalize
the design process by interconnecting
small-, medium-, and large-scale-integra-
tion subsystems. AHPL offers a conven-
ient, unambiguous means for expressing
and communicating a design at the regis-
ter-transfer level. Recently, there has been
much pressure on commercial IC vendors
to adopt the Electronic Design Interchange
Format (EDIF) as the industry’s standard
design interchange language. In contrast to
AHPL, EDIF resembles a symbolic layout
language. It supports design description at
several levels of abstraction, including
mask and symbolic layout levels. Recent
EDIF activities include UC Berkeley’s
project to support the EDIF 2.0.0. stan-
dard. The EDIF Software Project’s goal is
a translator-building toolkit that will pro-
vide facilities needed for EDIF transla-
tions.

Cell selection. The last issue concerns
the familiar problem of combinatorial
optimization. Cell selection involves
choosing from a list of possible candidates
an implementation that meets system re-
quirements. The choice is often influenced
by design constraints such as speed, area,
power, fan-out, complexity, architecture,
and reliability. Selection algorithms can
help prune the design search space, thereby
providing near-optimum decisions on cell
selection. This process is particularly
important in the design of application-
specific ICs, where a high degree of per-
formance and optimization is desirable.

In general, our article represents a sur-
vey of approaches addressing four of the
six issues just defined. That is, we cover
design hierarchies and multilevel repre-
sentations, design alternatives and version
control, common interface between cell
libraries, and efficient cell selection based
on given design constraints.

Background

Consider an independent nonstandard
CAD system (Figure 2a) where each appli-
cation tool has its own unique database.
Communication between tool i and tool j is
via interface (i, j). The total number of

COMPUTER



interfaces required for n tools is n(n — 1)/
2, thatis, the number of interfaces required
to implement a complete CAD system
grows exponentially as the number of tools
increases. In contrast, an integrated CAD
system (Figure 2b) consists of a set of tools
tightly coupled to a common database
through a standard set of tool interfaces.
Besides the advantages of a common data-
base, the integrated CAD system is also
modular, that is, application tools can be
“plugged” in or taken out without recon-
figuring the common database.

The desire for such an integrated CAD
system brings us to the concept of CAD
frameworks. Basically, a CAD framework
is a software system into which separate
application tools, such as schematic edi-
tors, simulators, and IC or printed-circuit-
board layout tools, can be plugged. ACAD
framework also includes front-end soft-
ware that manages a tool’s appearance on
the computer user’s terminal, back-end
software that tracks the enormous data
required to design acomplex VLSI system,
and key utilities that help manage multiple
teams of designers.

Most VLSI chip manufacturers offer
their own in-house CAD framework, but
standards are now being developed to
support the concept of painlessly plugging
different application tools into frame-
works from different manufacturers. The
CAD Framework Initiative (CFI) is an
industry-sponsored effort to standardize
interfaces between VLSI CAD tools. CFI
is seeking a set of standards for design-
automation tools that would allow end-
users to “mix and match” their own design
systems. Such standards would give IC
designers rapid access to new CAD soft-
ware technology from multiple vendors.

The need for standardization — and its
potential benefits — was succinctly stated
in the September 1989 SIGDA Newsletter:

... The need for industry-compatible CAD
frameworks has become more acute in recent
years with the emergence of the commercial
CAD industry and the increasing complexity
of designs. As new IC designs approach one
million transistors and electronic systems
are ten 1o a hundred times more complex, the
CAD support environments have become
slow and cumbersome. Many observers feel
the standardization of CAD environments is
the single most important factor in providing
the design productivity required for these
next-generation efforts.

The CFI board, representing more than 40
major IC design companies, has since set
up seven committees to study VLSI CAD
issues ranging from design data-manage-
ment techniques to user interfaces.

February 1990

Data models and
design data
management

Data models. The database models
applied in today’s database systems gener-
ally fall into one of the following catego-
ries:

« hierarchical,
* network,
« relational, or
* semantic.

A hierarchical schema consists of a col-
lection of record types and a collection of
link types that specify connections be-
tween the record types. The restriction is
that each record type in a given tree (with
the exception of the root type) must be the
child type of a single parent record type.
Hence, a hierarchical database consists of
a “forest” of trees, conforming to the struc-
ture defined in the schema.

The network data model is similar to the
hierarchical model, except for two distinct
features. First, it permits multiple link
types between record types. Second, a
given record can have multiple parent rec-
ords. Consequently, the network data
model is more flexible than the hierarchi-

. cal model.

In contrast, a relational database con-
sists of n-ary relations, where each relation
may be viewed as a table with a fixed
number of named columns and a variable
number of rows. The rows in each table are
called tuples, and the columns are referred
to as attributes. The relationships between
the data records ar= called sets. Relational
operations on the database, such as

« form subsets of rows or columns,

« form the union, difference, or intersec-
tion of sets, and

» combine relations by concatenating
sets,

¢an be performed using a data manipula-
tion language. Data manipulation lan-
guages for the relational data model are
typically derived from arelational calculus
or a relational algebra. The relational data
model overcomes the record-oriented limi-
tation of the hierarchical and network
models by allowing many-to-many rela-
tionships without pointer overhead.

A fundamental problem with the hierar-
chical, network, and relational data models
is their limited semantic expressiveness.
Semantic data models, on the other hand,

use static constructs to represent object-
object, type-type, and type-object relation-
ships. One of the major features of the
semantic data model is the ability to inherit
attributes from types to objects. The ob-
ject-oriented model and the semantic
(frame-based) network model are vari-
ations of the semantic data model.

Object-oriented programming systems
(OOPSs), such as Smalltalk, C++, and the
Common Lisp Object System, are based on
the object-oriented data model. Central to
the object-oriented data model is the con-
cept of a class (sometimes referred to as
type), which is a collection of data items
defining the state of an instance (or object)
of the'class, and a set of functions to man-
age that state. An instance is a unique copy
of the collection of data items belonging to
a particular class. Each data item is called
an instance variable, and the functions of
the class are referred to as methods. The
primary feature of an OOPS is the concept
of inheritance, which allows us to specify
a new class by defining only the differ-
ences between it and another class (called
its superclass). For example, we could
specify a class “half-adder” by declaring it
a subclass of “full-adder” and describing
the differences. Then, full-adder becomes
the superclass of half-adder.

In frame-based systems, instances are
frames (or generalized property lists) and
instance variables are called slots. Frame
systems often include runtime support for
expressing relationships between instance
records. For example, there are built-in
facilities that search the frame networks
for sets of instances that resemble but do
not exactly match each other. Such support
is often built on top of a conventional
OOPS.

Design data management. Currently,
there are four major approaches to effec-
tive management of data in VLSI CAD
applications:

(1) developing a special-purpose de-
sign DBMS (DDBMS),

(2) enhancing a current DBMS by add-
ing new capabilities and functions,

(3) building a layer of software on top
of a current DBMS to compensate
for deficiencies, and

(4) using a special-purpose file man-
ager that views the DBMS as an ap-
plication.

Ketabchi and Berzins* provide an ex-
ample of the first approach. They proposed
an object-oriented data model as a frame-

21



— o

>

A
A0
B }{

(b)

>o—T1a

F
s —
(a) TG: transmission gate

A A4
B

~ |

(c)

.

Figure 3. Three possible architectures for the XOR function: (a) based on trans-
mission gates; (b) gate-array implementation; (c) unoptimized combinational

logic circuit.

work for achieving effective management
of versions (refinements) and alternatives
of composite objects in CAD applications.
The second approach requires extensive
enhancements to the current DBMS, as
reported by Lorie and Plouffe® and Stone-
braker.® Lorie and Plouffe discussed ex-
tensions to System R, while Stonebraker
worked on enhancements to Ingres based
on the applications of abstract data types
and abstract indices. However, this ap-
proach is not very satisfactory because its
extra overhead slows down the DBMS.
The third approach is attractive because
itruns user-application programs on top of
a general-purpose DBMS and thus be-
comes operational rapidly. For example,
Ingres provides user interfaces through
high-level programming languages such
as C, Pascal, and Fortran. However, this
approach is inefficient because user pro-
grams must be linked to all Ingres database
functions, but only a few features are used

22

frequently. Furthermore, Ingres requires
enormous memory space during program
runtime.

Katz et. al.” used the fourth approach.
Their version server organizes design data
and provides mechanisms, such as object
check-in and check-out, for controlling
design evolutions. Design objects are
connected using version, configuration,
and equivalence relationships that form
orthogonal, hierarchical name spaces for
logically grouping design objects. This
approach, however, does not take advan-
tage of capabilities, such as data encapsu-
lation, provided by high-level data models
and database technology.

Some researchers claim that object-ori-
ented database management systems
(OODBMSs) offer several aids to rapid
prototyping of VLSIdesigns. For example,
Batory and Kim® introduced an object-
oriented Smalltalk-style model where
generic objects and version objects be-

come types and instances, respectively.
Instances can inherit attributes from their
individual types, similar to generalization
hierarchies in semantic data models. Gupta
et. al.? described their use of Cbase, a VLSI
CAD framework developed at the Univer-
sity of Southern California. Cbase uses
OODBMS concepts and provides a plat-
form for creating, displaying, manipulat-
ing, and maintaining digital VLSI designs.

Among other approaches is a data
model, introduced by McLellan,'® that
groups cells into libraries and establishes a
search path based on an ordered list of
libraries. In Neuman’s'' generalized ap-
proach to CAD databases, the version
server explicitly tracks versions but does
not use timestamps to identify invalid
equivalences.

Version management in software devel-
opment environments has been a matter of
concern for some time, but capturing the
semantics of design objects and version
control has not yet been dealt with. For
example, the Unix Source Code Control
System maintains versions of files but has
no knowlcdge of how they map onto a
hierarchical configuration of program
modules. Versions are named according to
creation times. One of the shortcomings of
SCCS is that it does not associate versions
of component modules with the module
that incorporates them. Some VLSI layout
editors, such as Magic from UC Berkeley,
incorporate a kind of version control in the
form of a timestamp. Mismatches in the
timestamps are reported when the compos-
ite (leaf) cells of aroot cell are altered, with
or without the designer’s knowledge.

As a case study of the special-purpose
DDBMS approach, we’ll consider a frame-
based model. We chose the semantic
(frame) model because its hierarchical data
structures support attribute inheritance and
are well suited for representing VLSI de-
sign data, which require hierarchical de-
composition and multiple levels of abstrac-
tion. The balance of this article discusses
our frame-based database system.

Frame-based model

In our VLSI CAD environment, the
design database can be modeled as a col-
lection of atomic and composite objects.
Primitives such as inverters, transmission
gates (pass transistors), and two-input
NAND and NOR gates are classified as
atomic objects. Composite objects are
made up of smaller components (atomic or
composite) interconnected in a hierarchy

COMPUTER



Documentation

1 Bit-size

L]

Object Type
Is-a  Documentation
N |
<——*¥ ] l I~
N Belong-to Constraints

Technology

L | |

Designer

]

- 10 f

Owner-of Ports
N
-~ | | |
N
L——  Port
Wire name Drive
I | |

File Status

Constraints

Power Path-delay

| ] 1 H

Height

I JL_|

Data
Fanout load
toHL {THL
v (L 11 |
tpLH tTLH
[ | | |
Data sheet Data
N 1
vdd Transition
I | | ]

Figure 4. A frame-based schema for a design object.

to perform a particular function. The leaves
of the hierarchy are atomic objects, and the
internal (intermediate) nodes are compos-
ite objects. A composite object is described
only once at the type level; when the object
is instantiated, it becomes an instance (or
cell).

We adopted a variation of Magic’s tech-
nique of labeling cell names, where each
instance is denoted by

<cell-type>_<tag>_<id>

The identifier cell-type specifies circuit
function (NAND, for example), tag identi-
fies a particular implementation (or ver-
sion) of cell-type, and id is the instantiation
number, a function of the number of times
an object type is instantiated in the global
database. The concatenation of identifiers
cell-type, tag, and id uniquely identifies an

February 1990

instance in a common database.

For example, consider the circuit im-
plementation of the exclusive-OR (XOR)
function. Figure 3 shows a set of possible
implementations of the function F= AB" +
A’B. The list of cell-types used in a com-
posite object can be derived by taking the
uniqueness of cell-types used in a list of
instances. For the XOR gate in Figure 3b,
the complete list of instances used in the
composite object is

{nand_A_0, nand_A_1, nand_A_2,
nand_A_3)}

where the cell-type used is “nand” gate and
the tag is “A.”

Each design object is described by a set
of views (documentation, switching char-
acteristics, I/O interface, etc.). In a seman-
tic network, each frame represents a par-

ticular view. Therefore, a design object
can be represented by a hierarchical struc-
ture of frames, as shown in Figure 4. The
dependency between the views is repre-
sented by the hierarchical structure of the
corresponding frames.

The root frame may contain slots speci-
fying the specialization and aggregation
of the instance. Specialization is repre-
sented by an is-a or AKO (a-kind-of) link,
while aggregation (or parts relationship) is
represented by parent-of (or owner-of) and
child-of (or belong-to) links. The type slot
is used to specify a particular implementa-
tion of a function (for example, carry-save
adder) or a unique characteristic of a cell
(for example, up-down counter).

The documentation frame describes the
legal aspects of a cell. The file slot speci-
fies the directory path for accessing the
layout file. The state of the design process,

23



)
-/

8AlUQg

o}-6uojag
J0-laumQ

sweu anpm

anfep
enEA []

g 5
5 &

Design object

O O O O O O D O O
7 0 ® g I o 124 = o
® 3 g 3 ° & 2 i3 g
E: 3 N @ E 3
ol % 2 g

] [] ° [] [] L] O 1 <[]

& oy & g & oy oy oy &

c c [ c C c c c [

@ (0] ()] (0] [} (5] @ (o] @

Port Data sheet

3 5| 2] ¢
3] 3 o 3
= o =] c
«Q = (=] ~
= =] & 5
5 3 o 2
a

F & & & ¥

= = c = c

o @ @ o o

= o) S o
3 Q = =5
o Ed 2 a
o)

[] [ ] 0 &0

oy & oy oy

c c c c

[0 ] (] [e]

Data

on(eA
anjeA
an|epA

oy
&

ers to other trees.

whether it has been functionally simulated
or its timing analyzed, is indicated in its
status slot. In the case where the design has
been fabricated and parametric testing
performed on the IC chip, such progress
should also be noted in the status slot.
Each port frame describes the interface

24

of one cell to other cells. The wirename
slot indicates wire types (for example,
signal, power, or ground), while the drive
slot specifies fan-out capabilities. This
information is essential for checking the
I/O compatibility of each port before
global routing or channel routing.

Figure 5. Tree representations of a design object. Notice the additional slots, “belong-to” and “owner-of,” containing point-

The constraints frame typically speci-
fies the physical dimensions of the Man-
hattan-style cell layouts, in terms of width
and height, and other equally important
considerations, such as power consump-
tion and propagation (or path) delay.

Besides functional specifications, IC

COMPUTER



designers are interested in dynamic and
static cell characteristics (for example,
propagation delay, fan-out, maximum
clock frequency, and test conditions).
Therefore, the propagation delay of each
[/O node is represented by a data-sheet
frame of the cell’s switching characteris-
tics. For example, delay time and rise/fall
time are specified under the following
conditions: worst-case processing parame-
ters, 5 volts, 125 degrees Celsius, and a
typical loading of 1.5-kilohms lumped-
series resistance and 1.5-picofarad load
capacitance with an input transition time
of 10 nanoseconds. The worst-case delay
information is intended to be used for quick
cell-to-cell performance comparisons. For
each data sheet under a particular test
condition, there is one set of switching
characteristic data for each fan-out load.
Hence, there is a separate data frame con-
taining the rise/fall times of a cell driving
a particular fan-out load.

Mapping design objects onto tree
structures. Based on the above schema,
we defined a set of rules for mapping de-
sign objects from the frame-based repre-
sentation (shown in Figure 4) to tree repre-
sentations such that the information about
the design objects can be stored or manipu-
lated. There are two major rules:

(1) Attributes of one-to-one (1:1) rela-
tionships between a parent frame and a
child frame are merged into a single tree
with the parent’s node as the root.

(2) In the case of one-to-many (1: N)
relationships between a parent and its child
frames, a separate tree is created for each
child frame. Each child frame is connected
to its parent through the belong-to slot and
each parent to its child frames via the
owner-of slot.

Figure 5 shows the corresponding tree
representation of the frame-based schema
(shown in Figure 4) after the mapping
process. Attributes of the documentation
frame, along with the area and power at-
tributes of the constraints frame, are
merged onto the parent tree since these
attributes are one-to-one relationships.
However, subtrees are created for ports
since each cell has more than one I/O port.
Separate trees are also established for the
data sheets since each cell has at least one
set of timing data. Also note that additional
slots, belong-to and owner-of, containing
pointers to other trees are created as a
result of the second mapping rule.

February 1990

Table 1. Switching characteristics of an XOR cell.

(Vdd = 5 V; input transition time = 5 ns)

Fan-out Fan-out
Parameter load = 1 load = 10
(typical) (typical)
Propagation delay
(high to low) tpHL 1.5 11.5
Propagation delay
(low to high) tpLH 7.0 19.0
Output fall time  tTHL 7.0 12.5
Output rise time  tTLH 12.5 40.5

Manipulating the
design database

Following the conversion of frames to
trees, information can be appended to the
cell database through an operation

fput(<object>; <constraint> <value>;

)

where fput is a procedure for performing
the append operation, the object argument
specifies the identifier of a frame or node,
the constraint slot specifies an attribute,
and one or more values are assigned to that
attribute. For example, consider the
switching characteristics of a tested XOR
cell from a library,'? as shown in Table 1.
The timing information is appended to the
design database through the following
append operations:

fput(XX7486;
is_a “XOR™;
bit_size 2;
owner_of “datasheet1”;
power 0.2;
status “SPICEd, Crystaled”;
technology “CMOS™;
file “library/cells/XX7486.mag”;
designer “UW/NW-VLSI”)

fput(datasheetl;
belong_to “XX7486";
owner_of “datal, data2”;
vdd 5;
input_transition_time 5)

fput(datal;
belong_to “datasheetl”™;

fanout_load 1;
tpHL 7.5;
tpLH 7.0;
tTHL 7.0;
tTLH 12.5)

fput(data2;
belong_to “datasheet]”;
fanout_load 10;
tpHL 11.5;
tpLH 19.0;
tTHL 12.5;
tTLH 40.5)

Pointers under slots owner_of and
belong_to link the parent and child nodes.
Units of transition, voltage, and DC power
consumption are assumed to be in nano-
seconds, volts, and milliwatts, respec-
tively. Notice that the popular TTL (tran-
sistor-transistor logic) catalog numbering
of cells is still applicable in a CMOS li-
brary; that is, in XX7486 above, XX is the
manufacturer’s standard prefix, 74 denotes
manufacturer’s specifications to meet
commercial applications (54 would denote
military specifications), and 86 is a TTL
number for XOR logic gate. Also, tpHL
and tpLH stand for time of propagation
from high to low and low to high, respec-
tively; tTHL and tTLH stand for time of
transition from high to low (output fall
time) and low to high (output rise time),
respectively.

Daemons. Functions automatically ac-
tivated in response to the need for a value,
or its placement or removal, are called
daemons. Therefore, these functions are
called if-needed, if-added, and if-removed
daemons. An example of a demand-driven

25



belonging to “74HC74.”

Query#1:  fget(¥)

Returns: A list of all instances and classes available in the database,
where wild-card indicator “*” means “match all.”

Query#2:  fget(*; *; *)

Returns: All existing information available in the database.

Query#3:  fget(74HC74; *; *)

Returns: All existing information about instance “74HC74.”

Query#4:  fget(74HC74; *)

Returns: A list of attributes associated with “74HC74.”

Query#5:  fget(74HC74; function; status; technology)

Returns: A list of requested information about “74HC74.”

Query#6:  fget(register; where bit_size = 4 & designer = “foo0”)

Returns: A list of 4-bit registers designed by “foo.”

Query#7:  fget(*; where designer = “foo”)

Returns: A list of all instances designed by “foo.”

Query#8:  fget(comparator)

Returns: A list of all instances of object type “comparator.”

Query#9:  fget(adder; where bit_size = 4
& path_delay> = 5.0 & path_delay <= 10.0)

Returns: A list of all 4-bit adders with path-delay ranging from 5.0 to 10.0 ns.

Query#10: fget(*; where parent_of = “74HC74")

Returns: A list of composite objects where “74HC74” has been instantiated.

Query#11: extract(“74HC74,” complete)

Returns: A complete list of atomic and composite objects
belonging to “74HC74.”

Query#12: extract(*74HC74,” unique)

Returns: A list of unique objects (atomic and composite)

Figure 6. Example queries demonstrating language features.

if-needed daemon is the area-calculating
function, which can be applied to all in-
stances with Manhattan-style geometries.
Given the width and height of a cell, for
example,

fput(74HC74; width 210; height 196)

the function “area = width x height” will
return a value of 41,160 if queried. The
database does not store this value because
it can be automatically computed if
needed. This area-calculating function is
always “lurking” inside the program,
hence the term “if-needed daemon.”

The expertise of IC designers can be

26

captured with artificial intelligence tech-
niques. This expertise can take the form of
procedural knowledge, for example, a set
of procedures to calculate the passive com-
ponent values for a differential amplifier,
given specifications of gain, output imped-
ance, common-mode rejection, etc.

Due to the nature of VLSI CAD data,
simple expertise for manipulating domain-
specific data can be captured in the form of
procedural knowledge. This knowledge,
represented by a set of rules, is useful for
handling incomplete or plausible informa-
tion through deductive inferences on the
design database. Theserules can be imple-
mented as daemons, for example,

for each instance
if function is digital comparator
then number of outputs is 3;
if status is tested
then all subcells are tested;
if technology is CMOS
then all subcells use CMOS;
and so forth.

The above rules may seem trivial, but
they are useful in enforcing integrity con-
straints on the design database. Since they
are invoked when information is appended,
the rules are implemented as if-added
daemons. If certain instances are deleted
from the database as part of the design
process, links between the parent cell and
its child cells are also deleted through the
if-removed daemon.

Query language for relational opera-
tions. Information can be retrieved using a
query language capable of performing re-
lational operations in a frame-based sys-
tem. The syntax for the query operation
used in our frame-based system is

fget(<object> {;<conditional
expressions> | <target siots>})

where function fget returns a list of infor-
mation that satisfies the conditional ex-
pressions or is stored in the target slots.
Conditional expressions are lists of con-
straints (numerical or symbolic) with rela-
tional arithmetic operators (for example,
=, <, and 2) and logical connectives (for
example, AND, OR, and NOT), while tar-
get slots are object attributes. In general,
conditional expressions are used for selec-

" tion queries, while target slots are used for

projection queries. Numerical range can be
specified by a conjunction of two numeri-
cal constraints as follows

<slot><relational operator><valuel>
& <slot><relational
operator><value2>

where “&” is the conjunction operator. For
example, the constraint “20.00 < path-de-
lay < 30.00” is represented as

path_delay > 20.00
& path_delay < 30.00

The example queries in Figure 6 demon-
strate a few features of the query language.
Queries 1 through 5 are called projections,
while queries 6 through 10 are selection
operations as used in relational databases.
In addition to the fget function, there is an

COMPUTER



extract function that recursively traverses
the component cells of a particular instance
and returns a list of all subcells (nodes). For
example, queries 11 and 12 will traverse
the tree of instance 74HC74, from the root
node down to the leaves. It is also possible
to traverse the first layer of intermediate
nodes beneath the root. Reserved key iden-
tifiers, “complete” and “unique,” specify
whether the returned list is a complete tally
of all instances or a list of unique object
types only.

Cell selection

The query language described above can
aid IC designers in choosing appropriate
cells from a frame-based VLSI cell library.
Choosing cells for VLSI circuit design
generally depends on four major catego-
ries: function, propagation delay, area, and
power consumption. These categories can
be subdivided into sets of attributes. For
example, attributes bit-size and type sup-
plement the category function, where type
is used to specify a particular implementa-
tion of the function. Category propagation-
delay is usually described by a set of attrib-
utes such as the minimum, maximum, and
typical delay associated with a particular
fan-out load.

To aid cell selection, IC designers cur-
rently use verification tools for functional
simulation and timing analysis. Previous
work in cell selection includes the LSMS
(logic synthesis and module selection) step
of Carnegie Mellon University’s Design
Automation Project, which used a set of
predictors to estimate achievable bounds
of cost, delay, and power parameters.

Our approach to cell selection is based
on the following sequence of tasks:

(1) Normalize and rank the constraint
data.
(2) Apply the search algorithm.

Normalizing design constraints. Sta-
tistics on area and power consumption can
be retrieved directly from the cell data-
base. The value for path-delay is assumed
to be the worst-case propagation delay,
where

worst-case propagation delay
= maximum(tpHL, tpLH)

In the XX 7486 example (with the timing
data shown in Table 1), the path-delay
value is derived by traversing the XX7486
tree using pointers in the owner-of and

February 1990

(4) for each instance in W,
apply rule-set;
if any rule is fired then
append instance to S;

and goto step 4.

(6) Return S.

(1) Group candidates into a preliminary cell-list P(f)
/* P contains a list of possible candidates that satisfy the design
specification (e.g., bit-size, etc.) for each function f */
(2) for each empty preliminary list, announce failure for f.
(3) Create a working list W consisting of the first instances
from each nonempty preliminary list.

/* S = { final selected cells } */
else the function of the particular instance is tagged “problem,”
and the “problem” function is appended to F.
/*F = { problem functions } */
(5) for each “problem” function of F,
if preliminary list is empty then announce failure and exit;
else choose the next instance from the preliminary list and update W,

/* Backtrack and choose new instance */

Figure 7. Cell selection scheme based on a backtracking algorithm.

belong-to slots. Consequently,

path-delay{XX7486]
= maximum(11.5, 19.0)
= 19.0 ns for fan-out load of 10

For each cell, statistics on path-delay,
area, and power consumption are quan-
tized (normalized) and ranked on a scale of
0.0 to 10.0 (least to most critical) by

rank = scale X (1.0 — ((a[i] — min)/
(max — min))) if max # min
= scale if max = min

where a[i] is a constraint value for cell i.
The value for scale is arbitrarily set at 10.0,
while min and max are the global mini-
mum and maximum values, respectively.

The following example illustrates the
ranking of design constraints:

Instance Path-delay (ns)
cell_i 20.0
cell_j 25.0
cell_k 15.0

From the above list of candidates, the
following parameters are computed:

max = 25.0

min = 15.0

rank of cell_i= 5.0
rank of cell_j = 0.0
rank of cell_k = 10.0

Therefore, cell_k is the best candidate
among the three cells in terms of path-
delay.

Prioritizing rules. Criteria for resolv-
ing design trade-offs in terms of speed,
area, and power can be obtained by speci-
fying a weight for each constraint. This
strategy of prioritizing the selection rules
is simple but effective, as shown by a rule-
base example:

fput(rulel; path_delay 10.0;
area 8.0; power 1.0)
fput(rule2; path_delay 10.0;
area 5.0; power 1.0)
fput(rule3; path_delay 10.0;
area 3.0; power 1.0)
fput(rule4; path_delay 8.0;
area 8.0; power 1.0)

The constraint weights (ranging from 0
to 10) are arbitrarily set by the user to
specify their relative importance in the se-
lection process. In the above rules, for ex-
ample, path-delay is most critical and
power is least important to rulel. The rules
are applied in ascending order. For ex-
ample, if there exists among the candidates
a cell_k with path-delay ranked 10.0, area
> 8.0, and power at least 1.0, then rulel is
fired and cell_k is selected. If rulel is not
fired, the next rule is applied and the proc-
ess repeated until success is reported or the
list of rules is exhausted.

27



{

}

SelectCells(function-list F)

Initialize selected cell-list S;
for each function fin F, group cells which satisfy the design specifications
into a cell choice list.
for each empty choice list, announce failure for f;
for each nonempty choice list,
rank and sort instances under each constraint;
apply rule-set to the first instance of the sorted list;
if at least one rule is fired then
append instance to S;
notify user of the rule fired;
else announce failure for f;
return(S);

Figure 8. Pseudocode (in C-like notation) of the non-backtracking algorithm.

Coin value

Input coin

]

Adder

{

Register

*— CLK

Counter

CR Return coin

Price

y

Comparator

GT [EQ

LT

CLR

CA
DA

Control

unit

[}

PDR Drop
pop

Figure 9. A vending machine system controller.

28

Design trade-offs are resolved by em-
phasizing the importance of each con-
straint in a selection rule. For example, if
area is critical, then more weight is placed
on that attribute. The ordering of rules,
along with their weight factors, allows user
control of cell selection from a list of pos-
sible candidates and resolves simple de-
sign trade-offs.

Backtracking algorithm. One ap-
proach to the overall cell-selection scheme
is based on the backtracking algorithm
outlined in Figure 7 (preceding page). Es-
sentially, the backtracking algorithm is an
exhaustive search. It quits when the first
solution is encountered or when the in-
stance choice-list for a particular function
is exhausted. The biggest drawback of this
backtracking approach is that it does not
optimize the solution (the selected cell
set). Since candidates are not sorted, cells
at the top of the lists are evaluated first;
better candidates deep in the list may not
be considered at all. However, for small
lists and cases where optimized solutions
are not important, this approach can be
quite fast.

Non-backtracking algorithm. The
non-backtracking algorithm closely re-
sembles the backtracking approach. The
major difference is that the non-backtrack-
ing algorithm relies on a sort routine that
ranks and sorts possible candidates ac-
cording to design constraints. Since the
candidates are sorted, backtracking is nct
necessary. User-specified rules are applied
successively, in descending order, to the
list of candidates. Hence, unlike the back-
tracking approach, the non-backtracking
approach employs some form of optimiza-
tion.

The pseudocode (in C-like notation) of
the non-backtracking algorithm appears in
Figure 8. Notice that each instance may
satisfy more than one rule in a given rule
set. In such cases, only the highest priori-
tized rule is reported to the user.

Test example

We used the design of a prototype vend-
ing machine to benchmark our selection
algorithms, which ran on top of the frame-
based database system. Figure 9 shows the
vending machine’s system controller.
Basically, it consists of an operation unit
and a control unit. The operation unit
consists of an adder, register, counter, and
comparator. The control unit is imple-

COMPUTER



mented using a programmable logic array
(PLA) with input and output registers. The
mnemonics for the control signals are

CP:  coin present

CR: changer ready

CA: clear accumulator

DA: decrement accumulator
PDR: pop drop ready

GT: accumulated coin value

greater than price

EQ: accumulated coin value equal
to price

LT: accumulated coin value
less than price.

Assuming a four-bit data bus, the design
specifications of the components imple-
menting the system controller can be ex-
pressed as

fget(adder; where bit_size = 4
& technology = “cmos”)
fget(register; where bit_size = 4
&type = “parallel-in/parallel-out”
& technology = “cmos”)
fget(counter; where bit_size = 4
& type = “synchronous, up/down”
& technology = “cmos”)
fget(comparator; where bit_size = 4
& technology = “cmos”)

Notice that the cell database does not track
the control unit, since it can be automati-
cally generated using finite-state machine
or PLA compilers.

We evaluated performance of the selec-
tion algorithms using a test database of
dummy entries with randomly generated
specifications. Figure 10 compares the
backtracking and non-backtracking algo-
rithms in terms of CPU access time on a
VAX-11/780 minicomputer. The pro-
grams are coded in C, and hash tables are
used in both cases. Generally, the speed of
the backtracking algorithm depends on the
selection rules, that is, tougher criteria
require more backtracking until a solution
satisfies all the conditions in the rules. On
the other hand, the speed of the non-back-
tracking algorithm depends on the number
of entries in the preliminary choice lists,
that is, more entries mean a longer sorting
time. With the preliminary choice lists
sorted, the selection rules are applied only
once, and backtracking is not required.

Figure 10’s approximately linear curves
confirm the algorithms’ exhaustive-search
nature. The speeds can be dramatically
improved if the parallelism inherent in our
selection algorithms is exploited and the
database has sophisticated access meth-
ods.

February 1990

12

10

Average CPU access time /sec
o

Backtracking

Non-backtracking

400

Number of entries in database

T T T T T T

600 800 1,000 1,200

Figure 10. Performance analysis of the selection algorithms.

verall, our case study supports

the need for cell-selection mecha-

nisms in integrated CAD or DA
systems. The characteristics of our proto-
type frame-based database system, espe-
cially the strategy of specifying a weight
factor for constraining selection rules,
make it a valuable tool for ASIC design.
Furthermore, the framework is general
enough for other CAD-related applica-
tions.

However, the selection algorithms have
two limitations. First, they do not consider
cell shapes and 1/O positions, criteria that
may be crucial for global routing of se-
lected cells. Second, because of shape, the
selection of one cell may affect the selec-
tion of others. This interdependency needs
to be properly identified and addressed. It
is also possible that a particular cell’s rank-
ing can be made dependent on the number
of times it’s instantiated in the design data-
base.

In the frame-based system, using point-
ers to parent-child relationships between
frames requires a lot of extra memory. The
approach is also prone to collapse of data
integrity in the case of a fault in the pointer
representations. In this aspect, relational
databases such as Ingres are preferable
because the relational data model uses a
concatenation of keys instead of the single
pointer used by the frame-based data
model.

On the other hand, the frame-based cell

library for digital circuits can also be ap-
plied to analog circuits. Information on
analog circuits, such as gain and frequency
response, and SPICE parameters, such as
the transconductance parameter, channel
length modulation parameter, threshold
voltage, bulk threshold parameter, and
channel surface mobility, can be encoded
in a similar manner,

Finally, our case study is not intended to
favor independent CAD systems. Rather,
it is an attempt to highlight major issues,
ones we can all agree on, involved in build-
ing a standardized, integrated CAD/CAM
system. I

Acknowledgment

The authors wish to thank Lisa R. Anderson
for her help with the figures and Harold Szu of
the Naval Research Laboratory for his encour-
agement and support. Also, special thanks go to
several anonymous referees whose thoughtful
and interesting comments helped improve the
quality of this article.

References

1. R.H. Katz, “Computer-Aided Design
Databases,” IEEE Design & Test, Vol. 2,
No. 1, Feb. 1985, pp, 70-74.

2. J. Newkirk and R. Matthews, VLS/

Designer’s Library, Addison-Wesley,
Reading, Mass., 1983.

29



. R.H.

. CMOS3 Cell Library, D.V. Heinbuch, ed.,

Addison-Wesley, 1988.

. M.A. Ketabchi and V. Berzins, “Modeling

and Managing CAD Databases,” Com-
puter, Vol. 20, No. 2, Feb. 1987, pp. 93-
102.

. R. A. Lorie and W. Plouffe, “Complex

Objects and Their Use in Design Database,”
Proc. ACM SIGMOD/IEEE Eng. Design
Applications, ACM, New York, 1983,

. M. Stonebraker, B. Rubenstein, and A.

Guttman, “Application of Abstract Data
Types and Abstract Indices to CAD Data
Bases.” Proc. ACM SIGMODIIEEE Eng.
Design Applications, ACM, New York,
1983, pp. 107-113.

Katz et. al., “Design Version
Management,” IEEFE Design & Test, Vol. 4,
No. 1, Feb. 1987, pp. 12-22.

. D.S. Batory and W. Kim, “Modeling Con-

cepts for VLSI CAD Objects,” ACM Trans.
Database Svstems, Vol. 10, No. 3, Sept.
1985, pp. 322-346.

. R. Gupta et al., “An Object-Oriented VLSI

CAD Framework: A Case Study in Rapid
Prototyping,” Computer, Vol. 22, No. 5,
May 1989, pp. 28-37.

. P. McLellan, “Effective Data Management

for VLSI Design,” Proc.22nd Design Auto-

mation Conference, CS Press. Los Alami-
tos, Calif., Order No. 635 (microfiche
only). 1985, pp. 652-675.

. T. Neuman, “On Representing the Design
Information in a Common Database,” Proc.

Simon Y. Foo is an assistant professor in the
Electrical Engineering Department of Florida
State University and Florida A&M University,
Tallahassee. His research interests include
VLSI CAD, microelectronics, and artificial
neural networks.

Foo received his BSEE, MSEE, and PhD

degrees in electrical engineering from the Uni-
versity of South Carolina in 1983, 1984, and
1988, respectively. He is a member of Eta
Kappa Nu, the IEEE Computer Society, ACM
SIGDA, and the International Neural Network
Society.

Readers may contact Foo at the Dept. of Elec-

trical Engineering, FAMU/FSU College of En-
gineering, Florida State Universtiy, Tallahas-
see, FL 32316.

ACM SIGMODI/IEEE Eng. Design Applica-
tions, ACM, New York, 1983, pp. 81-87.

12. CMOSPW Standard Cell Library, UW/NW
VLSI Consortium, Univ. of Washington,
Seattle, Wash., 1984.

Yoshiyasu Takefuji is an assistant professor of
electrical engineering at Case Western Reserve
University in Cleveland, Ohio. Before joining
Case Western in 1988, he taught at the Univer-
sity of South Florida and the University of
South Carolina. His current research interests
focus on neural networks and parallel process-
ing. He is the author of more than 40 technical
papers and two books published in Japanese,
Digital Circuits (Ohmsha, 1984) and Neural
Computing (Baifu-kan, 1990)

Takefuji received his BS, MS, and PhD de-
grees in electrical engineering from Keio Uni-
versity, Japan, in 1978, 1980, and 1983. He is a
member of the IEEE Computer Society, ACM,
and the Neural Network Society.

DAVID A PATTERSON &

COMPUTER ARCHITECTURE: A QUANTITATIVE APPROACH

“This will be the book of the decade in computer systems. It is required understanding for anyone working with
architecture or hardware including architects, chip and computer system engineers, and compiler operating system
engineers. It is especially useful for software engineers writing programs for pipelined and vector computers. It is

From Morgan Kaufmann Publishers, Inc.

Introducing the Definitive Computer Architecture Text

and Reference for the 1990°s

unlikely to be superceded in any forseeable future.”

To Order:

— C. Gordon Bell

JOHN L HENNESSY

x $49.95 = S
CA residents add sales tax S
Shipping: US $2.25 for first copy: $
$1.00 for each additional, S
Int’l. $4.00 for first copy:

$3.00 for each additional.

Ship to:

No. of copies

Acct.No.

[ Check or money order enclosed.

Please charge my O visa O wMc

Expires

Name as it appears on acct.:

Signature:

Phone No:

Please send this coupon to:

MORGAN KAUFMANN PUBLISHERS, Department EE. P.O. Box 50490. Palo Alto, CA 94303-9953.

Reader Service Number 3



