
Novel approach to a
rule-based general purpose
program translator using

paramodulation

Yoshiyasu Takefuji and Michael Dowell

In this paper a rule-based Lisp dialect translator using
paramodulation is presented as an example of a general
purpose program translator application where the
knowledge about the translation is embedded in rules. The
advantage of using a rule-based system is to allow the
user to supply his own rules for translation, thus the trans-
lator can be considered as a general purpose converter.
Also, the rule-based L D T has the ability to test individual
rules for correctness to aid in rule development. The
translation being used for development is Franz to Com-
mon Lisp.

Keywords: Lisp, rule-based program translator, para-
modulation, converter

Since the advent of Lisp languages we have been suffer-
ing from a great number of dialects. Rapid progress
in artificial intelligence research has directed researchers
to focus on the dialect problem in Lisp languages.
Recently, the Department of Defense decided to use
only Common Lisp as the official Lisp language. How-
ever, a great number of useful Lisp programs are not
coded in Common Lisp: eventually those useful pro-
grams will have to be converted. In order to simplify
the conversion of programs, rule-based programming
may be one of the more promising solutions. Rule-based
systems allow users to create new conversion rules, and
in this sense, the rule-based translator will become a
general purpose dialect converter.

In this paper a rule-based Lisp Dialect Translator
(LDT) 1 is presented where paramodulation 2 is a key
feature of the LDT. The LDT takes advantage of the
fact that the structure, and much of the semantics of
different dialects of Lisp, are the same, and therefore

Center for Machine Intelligence, Department of Electrical and
Computer Engineering, University of South Carolina, Columbia, SC
29208, USA

do not need to be changed. The LDT makes one-to-one,
one-to-many and many-to-many translations. In addi-
tion, for the Franz to Common Lisp translation, a
special one-to-many translation is needed to allow for
the use of superparentheses. The rule form, the different
types of translation and the relationship rules between
Franz 3'4 and Common Lisp 5 ~ are discussed below.

R U L E F O R M

Paramodulation is an inference rule based on the substi-
tution properties of the equality relation. Inference rules
are processes for producing new clauses from existing
clauses 2. The rules are in a paramodulation form, e.g.:

e(a)
EQUAL (a,b)

P(b)

In this example, the result P(b) is called the para-
modulant. The clause P(b) is said to be obtained by
paramodulating into the clause P(a) from the equality
EQUAL (a,b). The expressions 'into' and 'from' can
also refer to the terms being matched. In the above
example, one would say that paramodulation occurred
from the term a into the term b 2.

As another example, suppose we have the following
facts: John's son is handsome and Bob is John's son.
From the given facts we can conclude that Bob is
handsome:

is handsome(son(John))
EQUAL(son(John), Bob)

is__handsome(Bob)

In the above example, one would say that paramodu-
lation occurred from the term son(John) into the term
Bob.

The LDT restricts the form of the equality literal such
that the 'from' term is always to be the left-hand side

0950-7051/88/020090-04 $03.00 © 1988 Butterworth & Co (Publishers) Ltd
90 Knowled~ze-Based Systems

of the equality literal, and the 'into' term is always to
be the right-hand side of the equality literal. When a
substitution is made for a variable it must be made
for all occurrences of the variable in the clause.

The rules represent the relationship between the
dialects, and will be of the form:

EQUAL (old expression : new__expression)

with the colon acting as a deliminator. In our case the
'old__expression' will be Franz Lisp and the 'new__
expression' will be Common Lisp.

Within the expressions, variables will allow for one-to-
many and many-to-many translations. The variables in
different equality literals are completely independent,
even if they have the same name. The first part of the
rule 'o ldexpress ion ' will allow for single- or multiple-
atom instantiation. Single-atom instantiation will be
specified by using the '?' symbol. For example:

match '((? who) goes to school) '(Nancy goes to
school)

will cause variable who to be instantiated to 'Nancy'.
Multiple-atom instantiation will be specified by using

the ' + ' symbol. For example:

match '(Nancy goes (+where)) '(Nancy goes to
school)

will cause variable where to be instantiated to 'to school'.
The second part of the rule 'new___expression' will

have the variables replaced by the instantiated value,
regardless of either single- or multiple-atom instan-
tiation. For example:

(Nancy goes to the store)
EQUAL ((? who) goes (+ where) : who will go where
after lunch)

(Nancy will go to the store after lunch)

In the above example, the variable who is instantiated
to 'Nancy', and the variable where to 'to the store'.
Looking at the second part alone, it is not clear which
are variables, but who and where will be replaced due
to the first part.

T R A N S F O R M A T I O N S

One-to-one transformations
The rule form for one-to-one transformations is the
simplest to derive with the 'new expression' directly
replacing the 'old__expression'. This can be thought of
as direct substitution, e.g.:

The relationship: EQUAL (add : +)
The Franz function: (defun example__l 0 (add 2

3))
The Common function: (defun example 1 0 (+ 2

3))
The paramodulation occurred from the 'add' function
into the ' + ' function.

One-to-many transformations
The rule form for one-to-many transformations involves
matching, which is done by using variables within the

expressions. The first part of the rule 'old expression'
will allow for single- or multiple-atom instantiation. The
second part of the rule 'new expression' will have the
variables replaced by the instantiated value, regardless
of either single- or multiple-instantiation, e.g.:

The relationship: EQUAL (nequal (? x) (? y)
: not (equal x y))

The Franz function: (defun example__2 0
(cond ((nequal 'a 'b)
(princ 'a))))

The Common function: (defun example__2 0
(cond ((not (equal 'a 'b))
(princ 'a))))

The paramodulation occurred from the 'nequal' function
into 'not (equal', the x variable was instantiated to 'a,
the y variable was instantiated to 'b. Notice the variables
in the right-hand side were not in the same form as
the left-hand side. This is what allows for substitution
regardless of single- or multiple-atom instantiation.

Many-to-many transformations
This type of translation can be seen as a combination
of one-to-one and one-to-many translations, with opera-
tions being performed on the variables and a direct sub-
stitution between the two instructions, e.g.:

The relationship: EQUAL (appendl (? x) (?
y) : append x (list y))

The Franz function: (defun example___3 0
(appendl '(a b c) 'a))

The Common function: (defun example___3 0
(append '(a b c) (list 'a)))

The paramodulation occurred from the 'appendl' func-
tion into the 'append', the x variable was instantiated
to '(a b c), the y variable was instantiated to 'a. Notice
that the form of the y variable was changed on the
left-hand side to make the replaced value a list of y
instead of an atom y, resulting in 'a being replaced by
'(list a).

Special one-to-many transformation
To translate superparentheses from Franz to Common
Lisp a special type of translation is needed. In Franz
Lisp a right superparenthesis is represented by ']', and
can close off as many open left parentheses as needed
until the end of the function is reached or until an open
left superparenthesis is encountered. A left super-
parenthesis is represented by '[', and closes one right
superparenthesis. Superparentbeses are not allowed in
Common Lisp, so a transformation is needed to change
left superparenthesis to a single left parenthesis, and
a right superparenthesis to the correct number of right
parentheses. The algorithm used is as follows:

character
(
[

add 1 to the current count
start a new count (= 1), save the old count
and replace with (
subtract 1 from the current count
replace with the correct number of (
determined by the current count, resume
the old count (unless this is level 0 then
start over)

Vol 1 No 2 March 1988 91

The Franz function:
level0:1 21 2 0
level 1: 12 321 2 0

(defun example__4 0 (cond [(null 0) (print 'hello']]

The Common function:
level 0 I [
level 1 [[[

(defun example~4 0 (cond ((null 0) (print 'hello'))))

The left superparenthesis was replaced by a single left
parenthesis and a new count was started. When the first
right superparenthesis was encountered, it was replaced
by two right parentheses and the old count was resumed.
Then the second right superparenthesis was replaced by
two right parentheses, which returned the original count
to zero, and thus signified that the function was finished.

LDT G E N E R A L S T R U C T U R E

At present the source code of the LDT is written in
Franz Lisp, and when completed will be translated into
Common Lisp using itself. The final structure of the
LDT has not been established, but a successful prototype
is in operation. The architecture of the LDT is shown
in Figure 1.

The LDT makes two passes, with the intermediate
results being stored in a file. The first pass replaces the
superparentheses by processing every character. The
second pass replaces all one-to-one, one-to-many and
many-to-many translations by processing functions, e.g.:

FIRST PASS SECOND PASS
.

special one-to-many one-to-one
replace ['s &]'s one-to-many

many-to-many

E X T E N S I O N S

One immediate extension will be to upgrade the match-
ing function to allow matching of variables to characters
within a word. This will allow for translation of the
combination of cars and cdrs which exceed a length
of four characters in Franz Lisp to the correct sequence
of cars and cdrs of length less than four characters in
Common Lisp. In Common Lisp no more than four

! ,RANzLs, I I Equa,v'era, 1 PROGRAM (rules) (facts}
i~ ',I II II
II It
II tl
V

I TRANSLATOR l (control}

II
I,,
v

I COMMON J LISP PROGRAM

Figure 1. LD T prototype architecture

combinations of car and cdr may be combined into one
function name, e.g.:

(caddaddr list)
EQUAL (c*r (? x) : c*4r (c*4r c))

(caddar (cddr list))

The paramodulation occurred from the 'caddaddr' func-
tion into a sequence of c ~ r ' s where only four were
allowed in each function.

AIDING RULE D E V E L O P M E N T

The rule-based LDT allows for testing of one rule at
a time, which will help to derive correct rules. This can
be done by writing a test program which contains only
the function which is to be translated. Using this pro-
gram and the single rule under development as the input
for the translator, the result of the translation can be
studied to determine how the rule must be changed.
Once the correct form has been reached, the program
can be run in the new dialect to determine if the
semantics are correct.

R E L A T I O N S H I P B E T W E E N F R A N Z AND
C O M M O N

Franz and Common Lisp overlap, with some functions
being present in both dialects (see Figure 2). Therefore,
not all Franz Lisp functions have to be translated: only
those functions which are different or are not present
in Common Lisp (see Figure 3).

In Common Lisp 7, the function ' + ' can add any type
of numbers, while in Franz Lisp the function ' + ' will
only add integers within a certain range. The equivalent
Franz Lisp function for the Common Lisp function ' + '
is represented by one of the following one-to-one
equality literals:

EQUAL (add : +)
EQUAL (plus : +)
EQUAL (s u m : +)

In Common Lisp the member function uses EQL test,

FRANZ [....
III /./,/I/II I////I S,,;;;,;;;,//;,;;,,
/ / ,</ ' ' , , / / 5 / , , / 7
'1 / / I / 1 1 / J I I I I / I
" i / 1 / I l i / / / I I I I / I

COMMON

Figure 2. Relationship between Franz and Common Lisp

l FRANZ LISP] --41,
• I

COMMON LISP

Figure 3. View of translation

92 Knowledge-Based Systems

while in Franz Lisp the member function uses the
EQUAL test. The equivalent member function in
Common Lisp compared to the member function in
Franz Lisp is represented by the following one-to-many
equality literal:

EQUAL (member (? x) (? y) : MEMBER x y :TEST
'EQUAL)

Finally one of the many-to-many equality literals:

EQUAL (appendl (? x) (? y) : append x (list y))

A worked example using the Franz-to-Common Lisp
translator is shown in Figure 4.

C O N C L U S I O N

In this paper a Franz-to-Common Lisp dialect translator
was presented as an applied example of a rule-based
general purpose program translator.

It has been shown that rule-based programming and
the paramodulation technique mentioned in this paper
can bring simplification to the process of program
translation, and improve software productivity and re-
usability, in that all the user has to do is provide rules
in order to obtain the target translation.

REFERENCES

1. Dowell, M and Takefuji, Y 'A rule-based Lisp dialect
translator using paramodulation', Proc. Future
Directions in Computer Hardware and Computer
Software (1986)

2. Lusk, E L and Overbeek, R A The Automated
Reasoning @stem ITP Argonne National Labora-
tory

3. Wilensky, R LISPcraft W W Norton and Co. (1984)
4. Foderaro, J K and SHower, K L The FRANZ LISP

Manual University of California (1982)

The first functwn is a Franz Lisp program, which will simply
take two numbers as input, see i f they are within a certain range,
then print a message depending upon the range.

(defun testl
(numl hum2)
(let [(x (addl numl)) (y (subl numl))]

[setq 1
(do [(range (list y numl x) (appendl range (addl x)))

(x x (add l x))]
[(member hum2 range)
(length range)[)[)

(cond [(greaterp I 12) (print 'too much difference')]
[(plusp (difference 1 3)) (print 'ok')]

[t (print 'too little difference')]]
Franz Lisp function

(defun testl
(numl num2)
(let ((x (I 1 + I numl)) (y (I 1 - I numl)))

(setq 1
(do ((range (list y numl x) (APPEND range (LIST (

(xx(I 1 + Ix)))
((MEMBER nurn2 range :TEST 'EQUAL)
(length range)))))

(cond ((> 1 12) (PRIN1 'too much difference'))
((plusp (- l 3)) (PRINI 'ok'))
(t (PRIN1 'too little difference'))))

Common Lisp function

The translated Franz Lisp functions were add1, sub1, append1,
member, greaterp, print and difference, along with translating
all of the superparentheses used in the Franz Lisp program to
demarcate the significant structures.

Figure 4. Worked example of the Franz-to-Common Lisp
dialect translator

5. Winston, P H and Horn, B K P LISP (2nd Ed)
Addison-Wesley Publ. Co. (1984)

6. Steele Jr., G L, Fahiman, S E, Gabriel, R P, Moon,
D A and Weinreb, D L Common Lisp Digital
Equipment Corp. (1984)

7. Brooks, R A Programming in Common Lisp, MIT,
John Wiley and Sons, Inc. (1985)

Vol 1 No 2 March 1988 93

