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Hence
k k o
lim o II (1-e)=1-1 (1-a)
k= j=0 i=j+1 i=0

Therefore, by (7), limy . . W} exists.

III. CONCLUSIONS

In this paper we briefly discussed the celebrated Widrow-Hoff
algorithm and concluded that this algorithm is robust. However,
the weight vectors do not necessarily converge in the presence of
measurement noise. We proposed a modified version of this algo-
rithm in which the reduction factors are allowed to vary with time
and showed that the algorithm is robust and the weight vectors con-
verge in the presence of bounded noise. We used in our analysis
only deterministic-type arguments. We also obtained an ultimate
bound on the error in terms of a convex combination of the initial
error and the bound on the noise.
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Technical Comments

Comments on ‘‘Parallel Algorithms for Finding a
Near-Maximum Independent Set of a
Circle Graph”’

Evan W. Steeg

Readers of the above article' by Takefuji et al. in the September
1990 issue may be interested to learn of earlier work on parallel
distributed algorithms for RNA secondary structure prediction. In
my M.Sc. thesis [1], [2], completed at the University of Toronto
in January 1989 and presented at the Fourth International Sympos-
ium on Biological and Atrtificial Intelligence Systems in Trento,
Italy, in September 1988, I describe a model and experiments very
similar to those of Takefuji er al.
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In my work I define a mapping of the RNA secondary structure
prediction problem onto mean field theory neural networks [3] and
specify a way for the networks to improve their structure predic-
tion performance over time by learning the sequence-to-structure
mapping as represented in a training set. Experiments in training
the networks on small tRNA subsequences led to networks that
performed comparably to those described by Takefuji et al.: very
accurate structure prediction for the small RNA molecules tested,
with convergence within several hundred iterations.

Some important similarities and differences between the two ap-
proaches are:

¢ The mappings of the problem onto neural networks are simi-
lar. Both approaches are based, more or less directly, on the
RNA secondary structure matrix, which is a two-dimensional
binary vector representation of base-pairing in RNA mole-
cules. In both approaches the classical ‘*Tinoco’’ rules [4] for
determining the thermodynamically optimal structure are as-
sumed, i.e., favor the formation of ‘‘stem structures’’ (se-
quences of adjacent edges in the circular graph) and remove
‘“knot structures’’ (edges that intersect with other edges).
Takefuji et al. place more emphasis on the circular graph as
the basis for their representation. Both their representation and
mine require O(n) units, where n is the number of possible
base pairs. (However, a molecular biologist would more likely
think of this as O(m?), where m is the length of the RNA
sequence).

e The method outlined by Takefuji et al. is based on Mc-
Culloch-Pitts neurons, and there is no provision made for
training the networks. My method is based on the use of MFT
networks and the selection of four adaptable parameters, in-
stead of hundreds or thousands of individual connection
weights, that make up the small optimization space for the
training process.

¢ Both models can be implemented in parallel hardware. The
MFT network may also be implemented in analog hardware,
as described by [5].

In the search for fast and accurate RNA structure prediction
methods, three things are paramount. First is the need for expert
knowledge, theoretical and empirical, to be built into the prediction
algorithms [6]-[8]. There are subtle relationships between free
energies of particular base pairings (Watson-Crick and others) and
other substructures, and a purely graph-theory algorithm for max-
imizing stacked base pairs and removing knots will not work on
longer RNA molecules. Second is the need for parallelism. Some
of the classical approaches to sequence comparison may be recast
easily into parallel alogrithms {7], leading, for example, to O (km)
algorithms on O(k)-processor machines. Neural networks ap-
proaches, also, of course, offer hope of fine-grained parallelism
implemented in efficient hardware. Third, machine learning tech-
niques should be exploited, to refine and extend the representations
of expert knowlege on the basis of trial and error over large amounts
of real data. Takefuji ef al. outline an elegant way to map the prob-
lem onto neural architectures. If such mappings can be augmented
with empirical knowledge (e.g., free energy values of “ase pairs
and substructures) and the ability to learn, as demonstrated in my
work, then extremely fast and accurate structure predicti »n may be
within reach.
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Authors’ Reply
Y. Takefuji and K.-C. Lee

Steeg mapped the RNA secondary prediction problem onto a
Hopfield neural network [1]. The mapping procedure is similar to
ours. The major difference is in the Lyapunov energy function,
where it plays a role for solving the problem. We have also pre-
sented another new mapping procedure for the RNA prediction
problem, where n(n — 1)/2 processing elements are used for a
sequence of n bases [2]. In [1], the energy function has four pa-
rameters, «, B, y¥ and u, which can be adjusted during leamning
based on the mean field theory. Steeg made an assumption that
there are a few or fewer than ten parameters which are obtainable
through leamning from examples. He claimed that the optimization
space with these four adaptable parameters is smaller than that of
individual connection weights. Remember that these four parame-
ters actually represent the individual connection weights.

Consider two simple Lyapunov energy functions:
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For learning, if the network has the maximum connectivity, the
Lyapunov function will have many variables A(x, i, j), where the
number of variables will be determined by the ranges of x, i, and
Jj. In (1), the weight strength is given by Ty, y, = —A(x, {,j) xy(1
— 8;), where §; = 1if i = j and 0 otherwise. To reduce the op-
timization space, the Lyapunov function is given by (2), where it
has only one variable, A. The weight strength is given by Ty; y;, =
—Abyy(1 — §;), where 6; = 1 if i = j and O otherwise. Our ques-
tion with regard to Steeg’s learning scheme is, Are four adaptable
parameters enough to satisfy general learning in predicting the RNA
secondary structure?
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The convergence speed for learning might be faster if the learn-
ing space were reduced. However, it is not yet known how many
variable parameters are required to guarantee the satisfactory learn-
ing. In (1) of our paper, two coefficients, 4 and B, are also trainable
if the same learning scheme [1] is used. Although the ability to
learn is quite attractive, the determination of the Lyapunov func-
tion is more important. We believe that the thermodynamic model
is the most reliable and consistent for predicting the RNA second-
ary structure. In other words, the learning capability is not neces-
sary as long as important thermodynamic properties are embedded
or exploited in the model. Our model, based on a part of Tinoco’s
model, is still lacking in several considerations, for example, the
different strengths of G-C and A-U bonds, for example 2.4 kcal
between G and C and 1.2 kcal between A and U. In another ther-
modynamic model of ours [2], the different strengths of G-C and
A-U bonds and a hairpin loop constraint are considered. Instability
forces, including interior looping, bulges, and other hairpin loops,
must be also considered in the Lyapunov function of future neural
network models.

We can conclude that the necessity of the learning capability for
the RNA secondary structure prediction is questionable. We be-
lieve that the task is to build a robust parallel algorithm considering
more thermodynamic properties in the model.

REFERENCES

{1] E. W. Steeg, ‘‘Neural network algorithms for RNA secondary struc-
ture prediction,’’ Master’s thesis, Computer Science Dept., University
of Toronto, Toronto, Canada, 1989.

2] Y. Takefuji, C. W. Lin, and K. C. Lee, '*A parallel algorithm for
estimating the secondary structure in ribonucleic acids,”” Biol. Cy-
bern., vol. 63, no. 5, pp. 337-340, 1990.

Corrections to ‘‘Sufficient Condition for Convergence
of a Relaxation Algorithm in Actual Single-Layer
Neural Networks”’

J. M. Zurada and W. Shen

Because of a printer’s error, the wrong captions were published
for the two figures in the above paper.' The captions that should
have appeared are as follows:

Fig. 1. Two-bit A/D converter used for example convergence
evaluation.

Fig. 2. Relaxation algorithm for network from Fig. 1 (x = 1.3):
(a) stable solution for A = 3.5; (b) unstable solution for
A =5
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