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the classical -G method in a priori elimination of crosswind dif-
fusion. Also, it is superior to the SUPG method owing to an added
optimal artificial diffusivity in the streamline direction that sub-
stantially improves the stability. The numerical examples support
our contentions. Moreover, the generalized S-G method is appli-
cable to other problems.
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Comments on “‘O(n?) Algorithms for Graph
Planarization’’

Yoshiyasu Takefuji, Kuo Chun Lee, and Yong Beom Cho

Abstract—This article points out that our parallel algorithm provides
the maximum planar subgraph and it is compared with the maximal
planar subgraph provided by Jayakumar et al. in the above paper. The
space-time product complexity is also compared.

A graph is planar if it can be drawn on a plane with no two edges
crossing each other except for their end vertices. The above paper'
introduced two O(n?) graph planarization algorithms: PLANAR-
IZE and MAXIMAL-PLANARIZE. The ultimate goal of the al-
gorithms or the graph planarization problem is to maximize the
number of edges to be embedded on a plane with no two edges
crossing each other except for their end vertices. Although the
problem size is small, their algorithm did not provide the global
minimum solution for the ten-vertex, 22-edge problem, as shown
in Fig. 1. Fig. 2 shows their solution with 19 edges. Our parallel
algorithm found the global minimum solution where the maximum
planar subgraph has 20 edges for the same problem. Fig. 3 shows
our solution.

We are aware that the st-numbering algorithm is used in Jaya-
kumar’s algorithm for edge ordering in order to obtain better so-
lutions. However our experiment [1] showed that edge ordering
and edge planarization cannot be separated to obtain better solu-
tions. In our algorithm, edge ordering was randomly generated.
Although our algorithm is based on randomly generated edge or-
dering, it always generates the solution with 19 edges or 20 edges.
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Fig. 2. Maximal planar subgraph provided by Jayakumar et al. Three
edges, (2, 9), (3, 9), and (2, 8), are removed from the graph in Fig. 1.

Fig. 3. Maximal planar subgraph using our parallel algorithn}. Two edges,
(1, 4) and (8, 10), are removed from the graph in Fig. 1.

In our parallel algorithm [1], use is made of 2m processing ele-
ments that access the 2m data elements in parallel, where m is the
number of edges. Therefore our algorithm requires O(m?) space
complexity. The number of edges, m, determines the system size
(the number of processing elements). In the experiments reported
in Table I, in the paper in question, the number of edges, m, is
proportional to the number of vertices, m = O(n). This is the usual
assumption and it is widely accepted. When we consider space-
time product complexity with m = O(n), the complexity of our
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algorithm is still O(m?), because the empirical computation time is
O(1), where the computation time is determined by the number of
iteration steps. O(1) time has been empirically examined by using
a variety of nonplanar and planar graphs. In our simulation the
solutions can always be obtained within 100 iteration steps. When
assuming m = O(n), the space-time product complexity of Jay-
akumar’s algorithm is given by O(m®), where their space complex-
ity and time complexity are given by O(m + n) and O(n®) respec-
tively.

When we asume that the target graph is a complete graph with n
vertices and m = n(n — 1)/2 edges, the complexity of our algo-
rithm is O(m?) = O(n*). It is extremely rare in VLSI circuits and
printed circuit board routing to assume the condition m = on®) or
to deal with the complete graph planarization. The space-time
product complexity of Jayakumar’s algorithm with n = O(m?) will
be given by O(n*).

It can be concluded that our algorithm finds the maximal solution

in O(1) time with O(m) processing elements and the space-time
product complexity is given by O(m?), while Jayakumar’s algo-
rithm requires O(n?) time with a single processor and their space-
time product complexity is given by O(m®). One should know that
our algorithm not only generates a maximal planar subgraph but
also embeds the subgraph on a single plane in O(1) time with o(m*)
space-time product complexity, while Jayakumar’s algorithm only
generates a maximal planar subgraph in O(m?) time with om>)
space-time product complexity when assuming m = O(n). The
space-time product complexity of our algorithm is given by omn*
while that of Jayakumar’s algorithm is given by O(n*) when assum-
ingm = on?).
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