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Neural Network Parallel Computing
for BIBD Problems

Takakazu Kurokawa and Yoshiyasu Takefuji

Abstract—Neural network parallel computing for balanced incom-
plete block design (BIBD) problems is presented in this paper. A design
in which all the blocks contain the same number of varieties, and all the
varieties occur in the same number of blocks, is called a block design. A
block is said to be incomplete if it does not contain all the varieties. If a
design is balanced, we call it a balanced incomplete block design. BIBD
problems are very important for solving problems in experimental
design, material relating design, and coding theory. Two methods for
BIBD problems have been proposed. One uses the notion of the finite
fields, and the other uses the notion of the difference sets. In general, the
conventional algorithms are only able to solve the problems that satisfy
an affine plane or a finite projective plane. The proposed algorithm is
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able to solve BIBD problems regardless of the condition of an affine
plane or a finite projective plane. The proposed algorithm requires ;;
processing elements, or artificial neurons to solve the [k, 1; v]-design
problem in parallel. The proposed algorithm was verified by a large
number of simulation runs. The simulation results demonstrated that
the number of iteration steps for the system to converge to the solution
increases slightly with the problem size.

1. INTRODUCTION

Balanced incomplete block design (BIBD) {1] plays an important
role in experimental design and the modern theory of statistical
analysis [2]. It has also been used for solving material relating
design and coding theory problems [3]. There is a famous mathe-
matics problem called Kirkman’s schoolgirl problem, proposed by
T. P. Kirkman in 1850 [4]. Kirkman’s original problem is given as
follows: A school teacher is in the habit of taking her fifteen girls
V={1,2,-,15} for a daily walk, always arranging them three
abreast in what is called a block and is denoted by B; for i =
1,2, -+, 35 in five rows [4]. The problem is to arrange them so that
for seven consecutive days no girl will walk more than once in the
same row with any other girl [4]. Fig. 1 shows a solution of
Kirkman’s problem. The following properties must be satisfied for a
collection {B,, B,, "+, Bss} in a BIBD, or (15, 35,7, 3, 1)-design
[2]:

(a) no variety -appears more than once in a block where every
block contains three varieties;

(b) every variety appears equally often;

(c) every pair of varieties appears in the same number of blocks.

This paper introduces a new parallel algorithm for solving a
(v, b, r, k, N-BIBD design problem where the existing algorithms
cannot solve it if neither an affine plane nor a finite projective plane
is satisfied. The affine plane and the finite projective plane are
explained in Section II. The existing algorithms may have to use
a prohibitively expensive exhaustive search technique on the con-

dition. Our algorithm uses (Z) processing elements called the

McCulloch-Pitts binary neurons. The input/output function of the
ith McCulloch-Pitts neuron at time # V;(¢) is given by
Vi(t) =1, if Uy(t) >0

o v (1)
0, otherw1sefor1=1,2,-~-,(k).
Note that Uy(#) is the input of the ith neuron. The first artificial
neural network for solving combinatorial optimization problems was
introduced by Hopfield and Tank [5] where they used the sigmoid
neurons. It has been empirically demonstrated that the convergence
speed of the McCulloch-Pitts neural network is relatively faster
than that of the sigmoid neural network by solving graph planariza-
tion problems [6], tiling problems [7], sorting problems [8], [9],
predicting the secondary structure in ribonucleic acids [10], [11],
finding the maximum independent set [11], searching problems [12],
four-coloring and k-coloring problems [13], spare allocation prob-
lems [14], channel routing problems [15], crossbar switch schedul-
ing problems [16], knights tour problems [17], Hip games [18],
traffic control problems [19], [20], and broadcast scheduling prob-
lems [21].

It is proven that the state of the McCulloch-Pitts binary neural
network is always allowed to converge to the local minimum as long
as the motion equation of the McCulloch-Pitts ith neuron is given
by dU;/dt = —dE/dV; [9]. In other words, it is shown that the
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Fig. 1. A solution of Kirkman’s schoolgirl probiem.

computational energy function E = E(V,, V,,---, V ) monotoni-

()
cally decreases as long as the ith neuron in the McCulloch-Pitts
neural network obeys dU; /dt = —dE/dV; [13].

The mathematical proof of the global minimum convergence of
the McCulloch-Pitts neural network has never been given although
the massive empirical simulation experiments in many problems
have shown promising result [6]-[21]. Interconnection weights or
synaptic weights between neurons are simply determined by the

computational energy function E(V|, V,, -, V(u))‘ In order to
k
obtain the energy function E(V,, V,, ", V(U)), we can use the
k

RHS of the motion equation:

/ (RHS of the motion equation) dV; =
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If E follows the quadratic form, then the interconnection weight
T;; between the ith and the jth neurons will be given by

() (&) (&)
E= ; gl T, V.V, + 43 LV,

II. THE BIBD PROBLEM

In general, three properties must be satisfied for (v, b, r, k, N)-
design.

a) Each block B; (i = 1,2, -, b) contains k varieties where &
is a fixed constant;

b) each variety x € V appears r(< b) times in the blocks;

c) every pair of varieties appears N(< b) times in the blocks.

Two relationships among the five parameters v, b, r, k, and A\
are given by [2]:

1) ver=b-k
2) A1) =r-(k-1).

A (v, b, r, k, N-design can be expressed by a [k, \; v]-design in
an abbreviation form. Fisher and Yates have studied the design of
experiments in the modern theory of statistical analysis [22]-[24].
Bose presented several mathematical methods to construct block
design [25]-[27]. Grimaldi [2] determined the necessary condition
for [k, \; v]-design and showed how such designs could be gener-
ated by using finite fields. All of these research results are summa-
rized in [28].

Over more than half a century, two basic deterministic methods
have been proposed for BIBD problems. One uses the notion of the
finite fields, and the other uses the notion of the difference sets. In
general, the existing methods are only able to solve problems that
satisfy an affine plane or a finite projective plane. If a problem
satisfies neither an affine plane nor a finite projective plane, an
exhaustive search must be performed. The method using the affine
plane AG(n, q) is able to solve the [g,1; g"]-design problem
where ¢ must be a power of a prime number and 7 must be a
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positive integer. Another method using the finite projective plane
PG(n, q) is able to solve the [¢ + 1,1;(g"*! — 1)/(g — 1)]-
design problems. In both methods, points in planes must accord
with varieties and lines must accord with blocks of a design. If &
and v satisfy neither the AG plane nor the PG plane, the
[k, \; v]-design problem cannot be solved by the conventional
methods although solutions may exist.

For example, it is impossible to solve the [3, 1; 13]-design prob-
lem with the finite fields, because it satisfies neither the affine plane
nor the finite projective plane. Another method using the notion of
the difference set provides us the existence of a solution. But it does
not give us the solution. The conventional algorithms require ex-
haustive search to find an initial set of the rotation sets [1]. As far as
we know, no parallel algorithms have been proposed for BIBD
design problems. The proposed heuristic algorithm is able to solve
the BIBD problem regardless of the condition of the affine plane or
the finite projective plane.

HI. BIBD NEURAL NETWORK

To solve a [k, \; v]-design problem, (Z) binary neurons are

required in our system. Each neuron corresponding to a block
candidate represents a possible combination of k elements out of v
varieties. Consider an example of the BIBD problem: a [3, 1; 7]-de-
sign problem. There are seven varieties, which we denote 1, 2,--+,7 .
here. The number of possible candidates to make a block is given by

(;)= 35. The state of a single neuron with a black square or a

white square in Fig. 2 indicates the selection of the corresponding
block. One of the solutions in the [3, 1; 7}-design problem is (1, 2, 3)
(1,4,7)(1,5,6) (2,4,6) 2,5,7) (3,4,5) (3,6, 7), and the selected
blocks are shown by the black squares in Fig. 2.

A circuit diagram of the neural network for the [3, 1; 7]-design
problem is depicted in Fig. 3. In Fig. 3, each neuron is represented
by an inverter symbol. The output of each neuron performs an
inhibitory force to avoid the other candidates with the same pair of
varieties. The input of a neuron is connected to the outputs of those
neurons that have at least the same pair of varieties as shown in Fig.
3. For example, the input of the leftmost # 1 neuron is connected to
the outputs of #2, #3,---, #9, #16, %17, #18, # 19 neurons,
because all of these neurons have at least the same pair of varieties,
such as (1, 2),(1, 3), or (2, 3).

The output of the ith neuron V; for i = 1,2, -, (Z) is given

by

iU (+)
o= AL AN N) V= (=)
dt j=1
J#i

()
+BR| S SN N) V- (A1)

Jj=1
J#EQ

@)

where the function f(x, y) is 1 if an x-block and a y-block have
the same pair of varieties, and 0 otherwise. A and B are constant
integers. The function A(x) performs deterministic hill-climbing
where the function is given by

h(x) =1,
0,  otherwise. (3)

if x=20

The deterministic hill-climbing function has been used in many
applications [6]-[21]. The hill-climbing term was first introduced in
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Fig. 2. Neural network representation for a [3, 1; 7]-design problem.
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Fig. 3. A circuit diagram of a [3, 1,; 7]-design problem.

tiling problems [7). It has been empirically demonstrated that the
hill-climbing term not only helps the state of the system to escape
from the local minimum and increases the frequency to converge to
the global minimum [7], [13]. The first term in (1) is an inhibitory
force in order to avoid any (A + 1) blocks with the same pair of
varieties to be selected in a design.

The second term is an excitatory force to select the ith block if
the combination of k& elements in the ith blocks causes no conflict
with the selected A blocks in a design. Fig. 4 shows a complete
circuit diagram of #1 neuron as shown in Fig. 3 to solve the
[3, 1; 7]-design problem.

The entire circuit is composed of four components. Fig. 4(a)
shows a circuit performing a summing operation

35
358 N) -,
fat

The function f(N;, N,) is realized by the connectivity of the output
V; through a 10-kQ resistor. The operational amplifiers perform a
summing operation to determine the output voltage V. V, is given
by Vo=V, + V5 + -+ + Vi, InFig. 4(b), the operational ampli-
fiers subtract the value (A — 1) from V, and generate the calculation
result given by V. In Fig. 4(c), a circuit to compute the value of
dU, /dt discussed in (2) is shown. The input of this circuit is V,
from the circuit as shown in Fig. 4(b). An inverting amplifier shown
in the upper left part in Fig. 4(c) multiplies its input by 4. The
lower left components composed of two inverting amplifiers, two
diodes, a transistor, and seven resistors perform the binary function
in (3). The output of this component is multiplied by B through a
noninverting amplifier. Two outputs of an inverting and a noninvert-
ing amplifier are summed by the rightmost two operational ampli-
fiers. The output of this circuit generates dU, /dt. In Fig. 4(d), the
first operational amplifier performs integration that is given by

1 du, @t U, U,

CR dt T CR 41’
The second operational amplifier generates U,: —(— U, /CR)R’ =
U,. The last operational amplifier in Fig. 4(d) performs the binary
function in (1).

The following procedure describes the proposed parallel algo-
rithm.

[Step 0] Set t = 0.

[Step 1] The states of inputs Ug(¢) for i = 1,2,--, (Z) are

set to the small negative number or randomized.

@ -

Fig. 4. An analog circuit of the V, neuron. (a) A summing operation
circuit. (b) A difference operation circuit. (c) A dU, /dt operation circuit.
(d) An integrator and a V1 operation circuit.

v

[Step 2] Evaluate values of V(¢) for i = 1,2,---, (k

on the binary function in (1).
[Step 31 Use the motion equation in (2) to compute AU(?).

()
Y S(N,N) V= (A= 1)

J#Ei

) based

AU(t) = -A

v
(&)
+Bh{ > f(N,N) -V, = (A1)
j=1
Jei
[Step 4] Compute U(z + 1) on the basis of the first-order
Euler method:

U(t+1) = U(t) + AU(1), fori= 1,2,---,(”).

k

[Step 51 Increment ¢ by 1. If the number of fired neuron equals
to b(= M(v - 1)/k(k — 1)) and if the generated
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Fig. 5. The relationship between the frequency and the number of iteration
steps to converge to global minimum in the {3, 1; 7]-design problem.
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Fig. 6. The relationship between the frequency and the number of iteration
steps to converge to global minimum in the [3, 1; 9]-design problem.
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Fig. 7. The relationship between the frequency and the number of iteration
steps to converge to global minimum in the [4, 1; 13])-design problem.

element pairs are all unique, then terminate this proce-
dure, else go to step 2.

The simulator has been developed on a Macintosh SE/30. The
relationships between the frequency and the number of iteration
steps to converge to the global minimum for [3, 1;7], [3, 15 9], and
[4, 1; 13]-design problems are shown in Figs. 5, 6, and 7, respec-
tively. One thousand simulation runs were performed for each one
of three problems. In each one of the simulation runs the initial state
of the system was randomly generated. Our simulation result depicts
that the number of iteration steps and the solution are affected by the
initial state of the system, while the state of the system always
converges to the solution within 100 iteration steps. The number of
possible candidates or the complexity of the searching space of three

i
No. of iteration = 1 011100010110
No. of fired newrons = 8 01000101010
0011010000
101001010
00000000
1000000
000010
00111
0000
u 000
H 11
0

TTTT T =
an H
I

T
||

(a)

i

25 110010011111
01111111011
1111111011
011111111
11111111
W 1110000
1 ! 101010
nm 01111
H H 1
m 1
u 1
1

No. of iteration =
No. of fired neurons = 22

(b)
i

No. of iteration = 50 111111010111
No. of fired neurons = 24  t11tt111111
1111110101

11111111

o 11111111
T on 1111001 J
SEmNEA] 111011
un T 11111
FH ! IT 111
o ien
H T 1

(©

1
= 75 111111010111
ARRRRARRAREI
1110110111
IRSRRAREA

No. of iteration
No. of fired newons = 25

[ARERASEE
A I [ASRRERED]
T 1 01111
H ottt
n | ERNRNEE] 11t
H 1 11
H H 11
1 1T !
(d)
i
No. of iteration = g6 111111111111
No. of fired neurons = 26 11111111111
IRRRRRARRA
[RERRAREEI
[REERREEEN
e 1111111 )

HHHHH I IRRERE
1 H IRERE!
1 111
H t e
u u 11
H 1

T
1
1]
b

(e)

Fig. 8. The simulation result of a [3, 1; 13]-design problem. (a) The state
of the neurons after the first iteration. (b) The state of the neurons after the
25th iteration. (c) The state of the neurons after the 50th iteration. (d) The
state of the neurons after the 75th iteration. (e) The state of the neurons in
the final stage.

problems is given by (375)= 6.7 x 108, (?‘2‘) = 1.1 x 10", and

(71135 ) = 1.8 X 10?7, respectively. The following parameters were

used in our simulations: A =1, B =k — 1 if the number of
blocks selected in the design is greater than 2/3 of b, otherwise
B=k-2.
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Our algorithm solved the [3, 1; 15]-design problem in 159 itera-
tion steps, which is the famous Kirkman’s schoolgirl problem. The
number of possible candidates, the complexity of the searching
space is 43555) = 2.7 X 10°2, Note that the mass of a mountain is

about 1043 times that of an electron [29]. Furthermore, the
[3, 1; 13]-design problem (which cannot be solved by the conven-
tional algorithms using finite fields) was solved by our simulator.
Fig. 8 shows the simulation result of the problem. In Fig. 8, the
state of 286 neurons is depicted by a 11 X 26 rectangular array
where the black squares indicate the selected blocks. In the triangu-
lar array, the coordinate (i, j) for i=2,3,---,13, and j =
1,2,- -, 12 indicates whether a pair of variety i and j exists (“‘1°")
or not (“‘0’’). One of the solutions of this problem is (1,2,6)
(1,3,9) (1,4,5) (1,7,13) (1,8, 10) (1, 11,12) (2,3, 11) (2,4, 10)
2,5,7) (2,8,12) (2,9,13) (3,4,13) (3,5,8) (3,6,12) (3,7,10)
4,6,8) (4,7,12) 4,9,11) (5,6,9) (5,10, 11) (5,12, 13) (6,7, 11)
(6,10, 13) (7, 8,9) (8, 11, 13) (9, 10, 12), where the variety is num-
bered from 1 to 13. The complexity of the searching space is

(286 = 5.6 x 10%. Note that the mass of a man is about 103!

times that of an electron [29].

IV. ConcLusioN

A new parallel algorithm to solve the BIBD problems using the
McCulloch-Pitts binary neurons and its analog circuits were pre-
sented. Through a large number of simulation runs, the state of the
system converges to the solution within several hundred iteration
steps. The simulation results show that the number of iteration steps
increases slightly with the increase of problem size. A [3,1;13]-
BIBD problem (which cannot be solved by the conventional meth-
ods) was solved by our simulator. We believe that the neural
network approach provides one of the most excellent tools for
searching a solution among a large space.
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Dynamic Hysteresis of the RTD Folding Circuit and
its Limitation on the A /D Converter

Sen-Jung Wei, Hung Chang Lin, Robert C. Potter, and
Dave Shupe

Abstract—Dynamic hysteresis of the resonant tunneling diode (RTD)
folding circuit is analyzed. From the study of the dynamic hysteresis
effect, the limiting factors for folding type A/D converters are investi-
gated. A 4-bit A/D converter using 4-peak RTD’s is simulated. By
designing the RTD folding circuit carefully, our simulations show that a
4-bit A/D converter could have a 2-GHz signal bandwidth.

1. INTRODUCTION

Due to their very fast intrinisic response, resonant tunneling
diodes (RTD’s) have been considered for high-speed applications.
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