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Abstract 

Rofkar, J.D. and Y. Takefuji, A parallel algorithm for solving Unfriendly Beehive Problems, Neuro- 
computing 4 (1992) 167-179. 

This paper presents a general purpose algorithm for solving the Unfriendly Beehive Game. The pro- 
posed algorithm will utilize an artificial neural network to solve the problem. The neural network will 
use a simple partial differential (motion) equation expressed in terms of its natural constraints. Each 
constraint within the equation represents a simple connection to an artificial neuron. Each connection 
strength (or synaptic strength) is weighted by multiplicative constants and summed together. The 
result is an input that is adjusted in the direction that decreases the error or conflict. Using this 
information, the system derives a simple binary state output in an attempt to solve the puzzle. Given 
an overall time slot in which to resolve all conflicts, the system iteratively strives to arrive at the 
state of the global minimum. The proposed algorithm will be able to solve a variety of real-world 
problems, including: facility layouts for maximizing productivity and safety, classroom assignment for 
minimizing pupil conflict, crop and plant placement for maximizing yields, and chemical placement 
within shipping boxes to reduce the possibility of chemical interactions. 

Keywords. Parallel algorithm; Unfriendly Beehive Problem; combinatorial optimization. 

1. I n t r o d u c t i o n  

The problem behind the Unfriendly Beehive Game (a.k.a. the 1 to 19 Game) is to place the 
integers 1 through 19 into a 19-element hexagonal matrix (see Fig. 1 ) so that  the difference 
between any element and a neighboring element is four (4) or greater. The actual story 
behind the problem goes: There are workers in a beehive colony who are strictly ranked 
from 1 to 19. Because they are so competitive, no worker wants to be near another who 
is close to his/her in rank. Therefore, arrange them in the cells so that  no two adjacent 
workers are closer than some pre-defined rank apart (in this case 4). The oldest known 
publication of this problem appeared in the British magazine Games and Puzzles in 1971, 
but the best that  could be achieved at that  time was a rank difference of four. Jellis [1] and 
Pritchard [2] clearly defined the rank difference (rd) as four. However, Rubin [3] was able 
to show that  this problem could be solved with a rank difference of 5 (rd = 5), instead of 
4. Although solutions to the Unfriendly Beehive Problem do exist [1-3], there have been no 
proposed algorithms for solving it. 
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Fig. 1. 
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Can you place the numbers 1 to 19 in the honeycomb's nineteen cells in such 

a way that there is a difference of at least 4 between anyone cell and its 

neighboring ceils? 

2. Approach 

This paper will present a parallel algorithm based on a two-dimensional artificial neural 
network for finding a conflict-free solution to the Unfriendly Beehive Problem. The artificial 
neural network model uses a large number of massively interconnected simple processing 
elements. The processing elements in the neural network are called neurons because they 
perform the same function as simplified biological neurons. The interconnections between 
processing elements are determined by the motion equation: 

OE(VI1, V12, ..., Vn ) 
dt OVij ' 

where n is the number of nodes in the hexagonal matrix, Uij is the input and Y~j is the 
output of the i j th neuron. Note, E is called the computational energy function given by the 
necessary and sufficient constraints of the Unfriendly Beehive Problem. 

The goal of using the artificial neural network is to minimize the energy function E (see 
Fig. 2 for a representation of a typical energy landscape for an optimization problem). 
Theorem 1 in the Appendix shows that the motion equation performs a gradient descent 
method to minimize the energy function E - thus, converging at global minimum and, 
consequently, a solution to the Unfriendly Beehive Problem. 

CONFIGURATIONS 

Fig. 2. Representation of a typical energy landscape for an optimization problem. 

The first mathematically based neuron model was proposed by McCulloch and Pitts in 
1953 [4]. Their input/output function of their ijth neuron was given by: 
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f 1, if Uij > 0 

0, otherwise 

The sigmoid neural network model for solving combinatorial optimization problems was 
first introduced by Hopfield and Tank [5]. The input/output function of the i j th  processing 
element in their neural model is given by: 

Vii = 1 [1 + tan h()~Uij] , 

where A is a gain parameter. Takefuji proved that the decay term in the Hopfield neural 
network is harmful for the convergence of the system [6]. In other words, the decay term 
disturbs the system convergence under certain conditions. Therefore, the decay term is not 
used in our algorithm. Our method, however, is based on the Hopfield neural network model 
and the McCulloch-Pitts binary neuron since both have been used for finding near-optimum 
solutions of several NP-complete and/or optimization problems [6-14, 20-22]. 

However, the McCulloch-Pitts model sometimes produces undesirable oscillatory behav- 
ior. To suppress the oscillatory behavior of the neural network, we have introduced the 
property of hysteresis which consequently shortens convergence times! Theorem 2 in the 
Appendix shows that the discrete motion equation based on the first-order Euler method 
forces the state of the system composed of the hysteresis McCulloch-Pitts neurons to con- 
verge to the local minimum. 

3. S y s t e m  r ep re sen t a t i on  

The proposed algorithm utilizes a hill-climbing term (h). The hill-climbing term forces 
the state of the system out of a local minimum to converge into the state of the global 
minimum. The main difference of the proposed hill-climbing and the hill-climbing in [9] 
is its unique ability to both shrink and grow. By giving this property to the hill-climbing 
term, it increases the system's chances of 'climbing' out of a local minimum successfully - at 
the right time. This property will become more evident as we discuss the motion equation 
below. The hill-climbing's influence (C) is controlled by the number of program iterations 
(t). 

The algorithm uses two N x N square matrices for both input (Uij) and output (Vii) 
composed of N 2 simple processing elements each and extra N elements are used to store 
current values and to help determine the output state. N is the number of nodes in a 
perfect hexagonal matrix (N = 19 for the original Unfriendly Beehive Problem). A perfect 
hexagonal matrix can be defined in terms of the number of layers (L) surrounding the middle 
hexagon, where each layer is composed of the minimum number of hexagons required to 
surround the previous layer. Thus, N = 3L(L + 1) + 1. Output (V) of the i j th  neuron 
follows: 

1, 

v, j ( t )  = 0 ,  

Unchanged , 

if Uij(t) > UTP (Upper Trip Point) 

if Uij(t) < LTP (Lower Trip Point) 

otherwise 

Note that Uij(t) is the input of the i j th  neuron at time (t). 
The motion equation for the i j th  neuron is as follows: 

dt A V i k - 1  - A Vkj - 1 x 
k = l  
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where g(x) is a boolean function: 

1,  if x >_ rd 

g(x) = O, otherwise 

Nj is the value of node j ,  and gjk is the value of node j ' s  k th neighbor (for k = 1...6). h(x) 
is the hill-climbing funtion: 

x h(x) = ' if = 0 

0 ,  otherwise 

The first and second terms force the system to fire one and only one neuron per row and 
comumn, respectively. The third term forces the system to fire on values that  make the 
difference between any two neighboring elements (nodes) greater than or equal to the rank 
difference (rd). It achieves this by finding the difference between the current node values 
(Nj)  and all the k th edge values for k = 1...6. The last three terms are the hill-climbing terms 
which help the state of the system to escape from local minima by increasing the frequency 
to converge to the state of the global min imum. .4 ,  B, C, MIN, and MAX are empirically 
derived constant coefficients which act as the weights between processing elements. 

The following procedure outlines the proposed parallel algorithm for the Unfriendly Bee- 
hive Problem: 

1. S e t t = 0 , . 4 = l , B = 2 ,  C = l ,  M I N = - 1 3 ,  M A X = 1 3 .  

2. Randomize the input matr ix (Uij) for i = 1...N and for j = 1...N with values between 

MIN and MAX. 

3. Initialize the output  matrix (l~j) along with the additional Nj nodes for i = 1...N and 
for j = 1...N to the value 0. 

4. Compute the output  (V~j(t)) based on this initialization for i = 1...N and for j = 1...N 

for time ¢. 

5. Compute  the input matrix (Uij(t + 1)) for i = 1...N and for j = 1...N for time ¢ + 1 
based on the first order Euler method. 

6. Confine the input matrix (Uij) to MAX and MIN levels for i = 1...N and for j = 1...N. 

7. If all conflicts are resolved then END, else increment time by 1 (t = t + 1) and G O TO  
step 4. 

The following pseudo-code algorithm outlines the basis for simulating the synchronous 
UFBP parallel algorithm on a sequential machine: 
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P r o g r a m  Parallel_Simulat or _on_a_Sequential_Machine 

{INITIALIZATION} 
f o r i : =  l t o N  do begin 

for j : =  l t o N d o  begin 
{Initialize Uij, V/j, and additional Nj nodes} 

end;  
end;  

{MAIN} 
while (conflicts remain) do begin 

° , .  

{LOOP 1: Update all input values} 
f o r i  := l t o N d o  begin 

for j := 1 to N do begin 
Vij : :  Vii + (delta)Utj 

end;  
end;  

{LOOP 2: Update all output values} 
f o r i  := l t o N d o  begin 

f o r j  := l to N do begin 
if (Uij > UTP) then  V/j := 1 
else if (Uij < LTP) then  V/j := 0; 

end;  
end; 

end;  

It is quite simple to simulate a synchronous parallel system on a sequential machine. In 
the first loop, all input values Uij are sequentially updated while all output values V/j are 
fixed. In the second loop, all output values V/j are sequentially updated while all input 
values Uij are fixed. It is equivalent to simultaneously updating the values of all inputs and 
outputs. Currently, an asynchronous parallel system simulator is under investigation on a 
sequential machine. 

4. Tes t ing and  val idat ion 

We verified our algorithm by solving 1O0O cases for each rank difference (4 and 5) where 
the size of the hexagonal matrix remained constant (N = 19). In each case, the input 
matrix (Uij) was randomly initialized with values between MIN and MAX, and the output 
matrix (V/j) along with the additional Nj nodes were initialized to 0 for i = 1...N and for 
j = 1...N. Results of these tests can be seen in Figs. 3 and 4 for rank differences of 4 and 
5, respectively. 
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Fig. 3 .  Relationship between program =terations and frequency that the program wil l  

converge to global minimum. Less than 100 iterations accounted for over 90% 

of all solutions. RD -- 4, N = 19. 
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Results when rd = 5 
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Fig. 4. Relationship between program iterations and frequency that the program will 

converge to global minimum. RI) = 5, N = ]9. 

Accompanying these results are possible solutions for rd = 4 and rd = 5, where N = 19 
(Figs. 5 and 6) as well as Fig. 7 which shows snapshots of two sample runs for rd = 4. 
Once our algorithm was validated, we increased the number of layers (L). We present a 
few solutions for N > 19 (Figs. 8-14 ). It must be noted that the rank difference can also 
increase for N > 19. Because of this fact, we have included Table 1 which lists the maximum 
rank difference for 19 < N _< 91 for which our algorithm was able to produce solutions. 
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Table 1. Empirical results for maximum rank difference per layer. 

Layers Number of nodes Rank difference 
2 19 5 
3 37 8 
4 61 13 
5 91 20 

Table 2. Summary of simulation results. 

Average iteration steps to convergence frequency 
N RD convergence to solutions 
19 4 57.7 99.6% 
19 5 105.8 66.2% 
37 7 89.2 99.5% 
37 8 149.0 91.5% 
61 13 189.2 54.0% 
91 20 238.8 18.0% 

Empir ical  results indicate tha t  the rank difference increases by a factor  of the next odd 
number  for each addi t ional  layer. Thus, it appears  tha t  the maximum rank difference can 
be cMculated as: 

L-2 

r d = 5 +  E ( 2 k  + 1 ) ,  

k--I 

where L equals the number of layers, and L > 2. Table 2 shows some simulat ion results 
including average i tera t ion steps and convergence frequency. 

The Unfriendly Beehive Game computer implementation was developed on an IBM P C / A T  
compatible 386SX-20 using Borland's Turbo C++. 

A p p e n d i x  

dE 
T h e o r e m  1. The system always satisfies ~ <_ 0 under two conditions: 

(i) dVij OE 
dt OVij and 

(ii) Vii = f (U i j ) ,  

where E is the computational Lyapunov energy function and f (  Uij ) is a nondecreasing func- 
tion. 

P r o o f .  Consider the derivatives of the computat ional  energy E with respect to t ime t. 

dE g g dYij OE _ 

= Z Z dt OV, j i j 

N N dUij dVij OE 

= Z E dt dVij OV, j i j 
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Iteration=18 Iterations34 

1,3 8 

Iteration=21 Iteration=51 

Iteration=87 Iteration-ll 

Fig. 5. Sample solutions for rank difference = 4. 

Iteration=f67 

@ 
I t e r a t i o n = 1 3 1  

I t e r a t £ o n = 1 5 9  

Iteration=125 

@ 
Iteration=lgo 

@ 
Iteration-201 

Fig. 6. Sample solutions for rank difference = 5. 
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Sample i: Sample 2: 

18 

Iteration=3 Iterat ion=4 

@ @ 
Iteration=13 Iteration=8 

I t e r a t i o n = 2 8  I t e r a t i o n = l l  

Fig. 7. Three snapshots and solut ions from two sample runs. rd = 4. 

Fig. 8. Solut ion f o r N = 9 1 ,  L = 5 ,  R D = 1 8 .  I terat ion = 67. 

Fig. 9. Solut ion for N = 91, L = 5, R D  = 19. I terat ion - 64. 

175 
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Fig. 10. So lu t ion  for  N = 61, £ = 4, R D  = 12. I te ra t ion  = 88. 

Fig. 11. So lu t ion  for  N = 61, L = 4, R D  = 13. I te ra t ion  = 78. 

Fig. 12. Solution for N = 37, L = 3, R D  = 7. Iteration = 142. 

Fig. 13. So lu t ion  for  N = 37, L = 3, R D  = 8. I te ra t ion  = 79. 
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Fig. 14. So lu t ion  for N = 91, L = 5, R D  = 20. I t e ra t ion  = 208.  

N N (dUij~ 2 dVij where OE dUij 
= -  E E \ dt ) dUij ~ i s r e p l a c e d b y  dt 

i j 

dVij 
_< 0 where ~ >_0. [] 

A E  
T h e o r e m  2. The system always satisfies - - ~  <_ 0 under two conditions: 

i) Au~5 _ A E  
At AVij ' and 

~) v~j = f (ui~) ,  

where E is the computational Lyapunov energy function and f(Uij) is a binary hysteresis 
McCulloch-Pitts function: 

1, i f  Uij > U T P  

f(Uij) = 0, i f  Uij < LTP 

unchanged , otherwise 

Proof .  Consider the derivatives of the computational energy E with respect to time t. 

N N 
AE A ~ j  AE 
At = Z At 

i j 

N N ~ t  j AUij~ 
: Z  Z - -  

i j 

A E  AUij 
where ~ is replaced by At 

N N (AUij iVi j  (AUij~ 

i j 

i j 
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AUij Uij(t + At) - Uij(t) Let AV/j Vij(t + At) - Vii(t) 
Let y be At . ~ be Uij(t + At) Uij(t)" 
sufficient to consider the following four regions: 

Region (1). Uij(t)  > U T P  and Vii(t)  = 1 

Region (2). LTP _< Uij(t)  <_ U T P  and ~ j ( t )  = 1 

Region (3). LTP _< Uij(t)  <_ U T P  and Vii(t)  = 0 

Region (4). Uij(t)  < LTP and Vii(t)  = O. 

In region (1), we must  consider the four possible cases for Uij(t  + At) :  

Case (1). u j(t +  xt) > uij(t) 
Case (2). LTP _< Uij(t + At) < Uij(t) 
Case (3). Uij(t  + At)  < LTP < U~j(t) 

Case (4). Uij(t  + At)  = Uij ( t ) .  

A ~ j  
v 5(t + At)  =  j(t) = 1 AU ---7 - 

A E  
- - - 0 = ~  ~-~ = 0 .  

AVij O-  1 
At) = 0 ~ 

/xu j 

In cases (1) and (2), 

Au j _ 
In case (4), At 

In case (3), Vij( t  q- 

A E  
- - < 0 .  
At 

A E  
- 0. Therefore, At  = 0. 

It is necessary and 

AU j 
negative number > 0 and ~ < 0. Therefore, 

A E  
It is concluded that ~ _< 0 is always satisfied in region (1). Similarly, in regions (2), (3), 

A E  
and (4), ~ < 0 is always satisfied. [] 
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