
Chemometrics and Intelligent Laboratory Systems 241 (2023) 104941

Available online 25 August 2023
0169-7439/© 2023 Elsevier B.V. All rights reserved.

An updated tutorial on reproducible PyPI applications for advancing
chemometrics and boosting learner motivation

Yoshiyasu Takefuji
Faculty of Data Science, Musashino University, 3-3-3 Ariake Koto-ku, Tokyo 135-8181, Japan

A R T I C L E I N F O

Keywords:
Python package index (PyPI)
Software reproducibility
Open-source
Multiple operating systems

A B S T R A C T

Context: Programming, particularly with the widely-used scripting language Python, is a powerful tool for
expressing ideas in science and technology. PyPI, or the Python Package Index, is a management tool for Python
packages. Despite the availability of many tutorials on PyPI, including on its official website, many users have
encountered difficulties due to outdated information and issues with the twine upload library.
Objectives: This paper demonstrates the use of a gas chromatography program to prototype the PyPI application,
with the goal of maximizing its dissemination and validating its reproducibility in science and engineering
worldwide.
Methods: The peer-reviewed Python program on gas chromatography is converted to the PyPI application. Third-
party evaluations motivate learners to boost programming skills. The more the downloads from third-party
evaluations, the greater the incentive for learners.
Results: The gas chromatography program is successfully converted to agci PyPI application. Learners can be
excited to check their progress on external downloads to motivate them to learn and program. This tutorial shows
how to verify software reproducibility of the PyPI application via Code Ocean.
Conclusion: This paper demonstrated the real gas chromatography program to the PyPI application and showed
how to verify software reproducibility for maximizing dissemination skills and boosting the motivation of
learners for advancing chemometrics research.

1. Introduction

The data analysis approach for gas chromatography is designed to be
flexible through programming. In today’s technological age, it is
becoming increasingly important for chemists to fully utilize the
computational power of computers. Python is a scripting language most
commonly used in all areas of science and technology. Python Package
Index or PyPI is a management tool for maximally disseminating created
Python programs in the world. PyPI allows the PyPI applications to run
on Windows, MacOS, and Linux operating systems as long as Python is
installed on the system. Learners and instructors must know how to
debut a PyPI application for maximum dissemination of software.

This paper presents an example of converting a gas chromatography
Python program into a PyPI application and verifying its reproducibility
using Code Ocean. PyPI enables users worldwide to easily download and
utilize such applications. These steps are essential for advancing che
mometrics research, yet there is a lack of tutorials on the subject.

Teachers and instructors are always interested in tools that can
motivate their learners. PyPI provides programmers and learners with

greater motivation and incentives through third-party evaluations. The
number of downloads serves as an indicator of the popularity of the
developed software, and as this number increases, so does the motiva
tion of the programmer. Our observations show that when a learner’s
PyPI application experiences a rapid increase in downloads from third
parties, their motivation increases dramatically in proportion to the
number of downloads. PyPI is a valuable tool for increasing learners’
motivation and incentive to learn Python programming.

There are many tutorials on PyPI over the Internet such as the official
PyPI site. However, even the official PyPI site has not updated the
tutorial and many uploading users have failed due to the twine upload
library from users to the PyPI site. The latest twine has changed the
authenticity of uploading file. This paper’s contribution is significant for
PyPI users to solve their uploading problems. PyPI allows scientists and
engineers to maximize dissemination of their software applications to
the world for vitalization of industries and the advance of science. Tools
such as PyInstaller can automatically convert Python code into a PyPI
application. However, it is still necessary to prepare several important
files, such as setup.py and README.md, and to use twine to upload

E-mail address: takefuji@keio.jp.

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

journal homepage: www.elsevier.com/locate/chemometrics

https://doi.org/10.1016/j.chemolab.2023.104941
Received 30 June 2023; Received in revised form 20 August 2023; Accepted 22 August 2023

mailto:takefuji@keio.jp
www.sciencedirect.com/science/journal/01697439
https://www.elsevier.com/locate/chemometrics
https://doi.org/10.1016/j.chemolab.2023.104941
https://doi.org/10.1016/j.chemolab.2023.104941
https://doi.org/10.1016/j.chemolab.2023.104941
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2023.104941&domain=pdf

Chemometrics and Intelligent Laboratory Systems 241 (2023) 104941

2

important files to the PyPI website where Twine uploading scheme was
changed recently. This paper presents the fastest way for instructors and
learners to debut their Python programs to the world as PyPI
applications.

We define usefulness as the degree to which application’s function
ality can help a given user achieve his or her goals. There is no challenge
to study the software usefulness. In existing studies, software has been
playing a key role in science and technology, but learner’s motivation on
software programming has been neglected.

Traditional studies on software usefulness are based on question
naire survey [1–3] or conducting interviews with experienced assessors
[4]. Hanrahan et al. reported that the usefulness of an app will largely
depend on the purpose of that app relative to one’s practice setting [5].

With the rapid progress of open-source software, it is possible to
evaluate the software usefulness using packaging information. It is
common to assume that the usefulness of software to professionals is
proportional to its visibility, such as the number of downloads. In other
words, third parties believe that the more useful a PyPI application is,
the more downloads it will receive. As the number of downloads in
creases, learners receive stronger incentives.

Basic knowledge of Python programming is highly needed in science
and technology. However, the tutorial on PyPI applications is not
offered in many refereed journals. The purpose of this paper is to provide
a tutorial on the PyPI applications. Many refereed journals emphasize
software reproducibility [6–11], but they have no updated tutorials on
PyPI applications and software reproducibility in their journals. The
updated tutorial on PyPI and software reproducibility via Code Ocean
will make a significant contribution to science and engineering.

According to the 2022 TIOBE Index, the number one programming
language is Python, followed by C and Java [12]. It is essential for sci
entists and engineers in general to understand and deploy PyPI pack
aging and its software reproducibility verification.

Using an actual Python program (Asymmetric GC integration.py)
[13] published in the chemical journal, the program will be transformed
into the renamed PyPI application (agci.py) in order to illustrate exactly
how to debut a PyPI application. PyPI environment allows the program
to run on Windows, MacOS, and Linux operating systems without being
aware of operating systems as long as Python is installed on the system.

The key to analyzing data in this program with agci.py, based on the
pedagogical framework, is to understand that the normal distribution of
phase velocity in gas chromatography is typically Gaussian. This is
because the transfer of individual molecules from the stationary phase to
the mobile phase within the GC column is random. The "agci.py" model
currently calculates the areas of two peaks, those of acetone and
cyclohexane. To enable users to separate more components in the initial
mixture, the system allows them to include additional sets of initial
values. To determine the mole fraction of the distillate, two acetone/
cyclohexane solutions are used in datasets.

QSAR is a powerful tool for understanding how molecular structure
affects biological activity [15, 16, 17]. It has been used to develop
models that can predict the activity of new compounds, but these models
need to be interpretable to be useful. Shoombuatong et al. reviewed the
concepts of QSAR modeling and discussed the key issues that influence
interpretability in computational chemistry and physics.

Reproducibility is essential in science, and the reproducibility of
peer-reviewed articles must be rigorously assessed. This paper provides
the source code to the reader through PyPI and uses Code Ocean to
objectively guarantee reproducibility. The author not only introduces
these resources, but also provides actual examples of Gas Chromatog
raphy programs and detailed explanations of the surrounding com
mands to ensure complete reproducibility.

This paper will also show you step-by-step how to validate software
reproducibility of the converted Python application via Code Ocean. By
providing the specific example, this paper can fill in the missing gaps in
the current teaching environment and advanced software development
environment for advancing practice skills in teaching.

PyPI is a valuable tool for maximizing the dissemination of chemo
metrics programs and boosting learner motivation. It is important for
chemometrics researchers to know how to convert their Python pro
grams into PyPI applications and verify their reproducibility using Code
Ocean.

2. Methods

2.1. PyPI packaging

The instructions were created for a Linux terminal. PyPI needs three
files such as README.md, setup.py and agci.py respectively. The
changes from the original program (Asymmetric Gas Chromatography
integration.py [13]) are to allow input of sample csv files, to create a
new main() function, and to embed a function to save the result image as
result.png. The renamed program is called agci.py [14]. Shaded seven
lines in the source code in Fig. 1 show newly added lines to the original
program.

It is recommended that filename should not contain spaces since it is
difficult to know how many spaces there are between strings of filename.
To indicate that a filename contains spaces, we should use underscores
(_) instead of spaces.

This conversion from Asymmetric GC integration.py to agci.py does
not require any knowledge of chemistry. It took less than 5 min for this
conversion.

README.md file can be easily built with GitHub site creating a new
repository with a README file option.

The following setup.py template file can be used for a PyPI appli
cation. Shaded ten lines in Fig. 2 should be modified for your
application:

The following is necessary steps to debut a PyPI application.

1 Go to https://PyPI.org/account/register for creating a new account
2 To debut a PyPI application by uploading files to PyPI site, we need

twine library.

$ pip install twine.
The structure of directory (src) and files (README.md, setup.py,

agci.py) is as follows:
$ tree.

However, before run the command, you need to create the authen
tication file (.pypirc) in your home directory. The file.pypirc is with
three lines. The first two lines are fixed which you don’t have to modify.
The last line should be modified with your unique PyPI API token. Go to
you PyPI account and click Account settings. The API token can be
generated by clicking “Add 2FA with authentication application”.

[pypi]
username = __token__
password = <your PyPI token>

Once.pypirc file is ready, run the following four commands to upload
two files to PyPI site for a new PyPI debut. twine(4.0.2) was used.

$ python setup.py install
$ python setup.py sdist bdist_wheel
$ rm dist/*.egg
$ twine upload dist/*

Y. Takefuji

https://PyPI.org/account/register

Chemometrics and Intelligent Laboratory Systems 241 (2023) 104941

3

If your submission is successful, URL will be shown in the terminal. If
you want to update the PyPI program, delete all files under sdist/and
build/directory respectively by the following command:

$ rm -rf dist/* build/*

2.2. Reproducibility via Code Ocean

The following steps are needed for validation of software
reproducibility.

1. Go to https://codeocean.com/signup for creating a new account.
2. Click “Add Capsule” button and select “Create New”
3 Environment file will be popped and fill all in the Environment file.

Select Python3.8.5 with four Python libraries such as numpy
(1.22.3), pandas(1.4.2), matplotlib(3.5.1), scipy(1.8.0) and agci(0.0.1)
using pip3.

4 Click “Start with Sample Files” button to generate run file. run file is
modified as follows.

#!/usr/bin/env bash
set -ex
cp sample1.csv ../results
cd ../results
agci sample1.csv

5. Click “Submit for publication” button and “Pre submit” form will be
popped. Click all squares and click “Go to metadata”.

6. Fill out the metadata form and click the blue colored “Submit” button
in Pre submit form.

7. Within a few days, Code Ocean will send you a message of
“ACCEPTED FOR PUBLICATION”.

3. Discussions

This paper presented how to debut a PyPI application using a real
example. Using a simple Python program published in the Journal of
Chemical Education, the original program was converted to the PyPI
application with several lines changed and renamed agci.py with setup.
py and README.md files newly added.

The modified original Python program is able to run on Windows,
MacOS, and Linux operating systems without being aware of operating
systems as long as Python is installed on the system.

In the original program, modifications are needed to run on indi
vidual operating systems. In other words, the PyPI environment allows
the PyPI application to maximize worldwide software dissemination.

Verification of software reproducibility was also demonstrated in a
detailed procedure via Code Ocean. By providing the specific example,
this paper can fill in the missing gaps in chemistry and current chemical
education for advancing chemical technology and education.

According to PePy: https://pepy.tech/project/agci, the AGCI appli
cation has been downloaded 3117 times worldwide. The number of

Fig. 1. Python program.

Y. Takefuji

https://codeocean.com/signup
https://pepy.tech/project/agci

Chemometrics and Intelligent Laboratory Systems 241 (2023) 104941

4

Fig. 2. Setup.py.

Y. Takefuji

Chemometrics and Intelligent Laboratory Systems 241 (2023) 104941

5

users indicates the applicability, the usefulness, the reproducibility and
the proposed claim were justified. The more the downloads, the stronger
the incentive for programmers or learners. External evaluation, such as
the number of downloads, is essential to incentivize learners and pro
grammers. In the current engineering & science teaching, PyPI has never
been discussed from learner’ motivation tool. Therefore, the contribu
tion of this paper is important for teaching in science and technology.
This paper demonstrated how to convert the gas chromatography Py
thon program to the agci PyPI application and to verify it via Code
Ocean for advancing chemometric research.

Please note that the agci.py program, which was converted from the
original Python program (Asymmetric GC integration.py), can only
handle a single set of initial values with one peak in the chromatogram.
This is for educational purposes only.

Reproducibility was fulfilled by providing the source code to the
reader through PyPI and uses Code Ocean to objectively guarantee
reproducibility. The author not only introduced these resources, but also
provides actual examples of Gas Chromatography programs and detailed
explanations of the surrounding commands to ensure complete
reproducibility.

Conclusions

The outdated tutorials on PyPI, including the official website, have
left PyPI users unable to upload packages due to the new authentication
requirements of the twine library. The tutorial on PyPI in this paper has
been updated to no longer cause PyPI users to fail to upload PyPI
packages. This paper provides an example of how to convert an original
Python program into a PyPI application. This paper shows that PyPI is a
new tool that motivates learners through third-party evaluations and the
number of downloads. This is because the learner can observe the
progress and transition of the download in chronological order. The
more downloads, the stronger the incentive for learners. Finally, the
reproducibility verification of software via Code Ocean was presented.

Limitation

The agci.py program is a pedagogical tool for understanding the
Gaussian distribution of phase velocity in gas chromatography. This
distribution arises from the random transfer of individual molecules
from the stationary phase to the mobile phase within the GC column. As
a result, the program can only handle a single set of initial values with
one peak in the chromatogram. Two acetone/cyclohexane solutions are
used in datasets to determine the mole fraction of the distillate.

The methods presented in this paper may someday stop working due
to version upgrades, as the original PyPI manual did. This is because
software distribution over the Internet is a daily process, and the
methods presented in this paper may not be updated to reflect changes
in the software distribution landscape. The date of execution is
confirmed as August 1, 2023.

Author statement

YT completed this research and wrote the Python program and this
article.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] Leandro Flores da Silva, Edson Oliveira, Evaluating usefulness, ease of use and
usability of an UML-based software product line tool, in: Proceedings of the 34th
Brazilian Symposium on Software Engineering (SBES ’20), Association for Computing
Machinery, New York, NY, USA, 2020, pp. 798–807, https://doi.org/10.1145/
3422392.3422402.

[2] Robert W. Root, Steve Draper, Questionnaires as a software evaluation tool, in:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’83), Association for Computing Machinery, New York, NY, USA, 1983,
pp. 83–87, https://doi.org/10.1145/800045.801586.

[3] C. Ruman, J. Gillette, Distance learning software usefulness and usability: user-
centered issues in practical deployment, in: Ed at a Distance Journal, vol. 15, 2001,
p. 3, n3.

[4] E. Bouwers, A. van Deursen, J. Visser, Evaluating Usefulness of Software Metrics:
an Industrial Experience Report, 2013, pp. 921–930, https://doi.org/10.1109/
ICSE.2013.6606641, 35th International Conference on Software Engineering
(ICSE), 2013.

[5] C. Hanrahan, T.D. Aungst, S. Cole, Evaluating Mobile Medical Applications, 2014
ashp publications, https://www.ashp.org/-/media/store%20files/mobile-medical
-apps.pdf.

[6] J.M. Perkel, Challenge to scientists: does your ten-year-old code still run? Nature
584 (7822) (2020) 656–658, https://doi.org/10.1038/d41586-020-02462-7.
PMID: 32839567.

[7] Julia Koehler Leman, et al., Bonneau Ensuring scientific reproducibility in bio-
macromolecular modeling via extensive, automated benchmarks, Nat. Commun.
12 (2021) 6947, https://doi.org/10.1038/s41467-021-27222-7.

[8] But is the code (re)useable? Nat Comput Sci 1 (2021) 449, https://doi.org/
10.1038/s43588-021-00109-9.

[9] Supporting computational reproducibility through code review, Nat. Human
Behav. 5 (2021) 965–966, https://doi.org/10.1038/s41562-021-01190-w.

[10] J.F. Pimentel, L. Murta, V. Braganholo, Juliana Freire Understanding and
improving the quality and reproducibility of Jupyter notebooks, Empir. Software
Eng. 26 (2021) 65, https://doi.org/10.1007/s10664-021-09961-9.

[11] Mukherjee, Suchita, Almanza, Abigail, & Rubio-González, Cindy. Fixing
dependency errors for Python build reproducibility. https://doi.org/10.11
45/3460319.3464797 Retrieved from https://par.nsf.gov/biblio/10284919.

[12] https://www.tiobe.com/tiobe-index/.
[13] Michael Green, Xiaobo Chen, Data functionalization for gas chromatography in

Python, J. Chem. Educ. 97 (4) (2020) 1172–1175, https://doi.org/10.1021/acs.
jchemed.9b00818.

[14] Takefuji, Y. (2022) Agci for a reproducible PyPI application [Source Code].
https://doi.org/10.24433/CO.8712645.v1.

[15] W. Shoombuatong, et al., Towards the revival of interpretable QSAR models, in:
K. Roy (Ed.), Advances in QSAR Modeling. Challenges and Advances in
Computational Chemistry and Physics, vol. 24, Springer, Cham, 2017, https://doi.
org/10.1007/978-3-319-56850-8_1.

[16] W. Shoombuatong, N. Schaduangrat, C. Nantasenamat, Towards understanding
aromatase inhibitory activity via QSAR modeling, EXCLI J, 17 (2018) 688–708,
https://doi.org/10.17179/excli2018-1417.

[17] W. Shoombuatong, P. Prathipati, V. Prachayasittikul, N. Schaduangrat, A.A. Malik,
R. Pratiwi, S. Wanwimolruk, J.E.S. Wikberg, M.P. Gleeson, O. Spjuth,
C. Nantasenamat, Towards predicting the cytochrome P450 modulation: from
QSAR to proteochemometric modeling, Curr. Drug Metabol. 18 (6) (2017)
540–555, https://doi.org/10.2174/1389200218666170320121932.

Y. Takefuji

https://doi.org/10.1145/3422392.3422402
https://doi.org/10.1145/3422392.3422402
https://doi.org/10.1145/800045.801586
http://refhub.elsevier.com/S0169-7439(23)00191-0/sref3
http://refhub.elsevier.com/S0169-7439(23)00191-0/sref3
http://refhub.elsevier.com/S0169-7439(23)00191-0/sref3
https://doi.org/10.1109/ICSE.2013.6606641
https://doi.org/10.1109/ICSE.2013.6606641
https://www.ashp.org/-/media/store%20files/mobile-medical-apps.pdf
https://www.ashp.org/-/media/store%20files/mobile-medical-apps.pdf
https://doi.org/10.1038/d41586-020-02462-7
https://doi.org/10.1038/s41467-021-27222-7
https://doi.org/10.1038/s43588-021-00109-9
https://doi.org/10.1038/s43588-021-00109-9
https://doi.org/10.1038/s41562-021-01190-w
https://doi.org/10.1007/s10664-021-09961-9
https://doi.org/10.1145/3460319.3464797
https://doi.org/10.1145/3460319.3464797
https://par.nsf.gov/biblio/10284919
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1021/acs.jchemed.9b00818
https://doi.org/10.1021/acs.jchemed.9b00818
https://doi.org/10.24433/CO.8712645.v1
https://doi.org/10.1007/978-3-319-56850-8_1
https://doi.org/10.1007/978-3-319-56850-8_1
https://doi.org/10.17179/excli2018-1417
https://doi.org/10.2174/1389200218666170320121932

	An updated tutorial on reproducible PyPI applications for advancing chemometrics and boosting learner motivation
	1 Introduction
	2 Methods
	2.1 PyPI packaging
	2.2 Reproducibility via Code Ocean

	3 Discussions
	Conclusions
	Limitation
	Author statement
	Declaration of competing interest
	Data availability
	References

