COSC462 Lectures 16-20:
Automated reasoning

Willem Labuschagne
University of Otago

Abstract

We introduce the ideas of automated reasoning in the context
of first-order logic. Practical work involves the resolution-based
program called OTTER written by William McCune of the Ar-
gonne National Laboratory in Illinois, USA.

These lectures lean heavily on the writings of Larry Wos, also
of Argonne. The discussion of the full jobs puzzle is taken from
Wos, Overbeek, Lusk & Boyle: Automated Reasoning chapters 3
& 4 with only minor notational changes.

OTTER is freely available as a download from the Web. It is
also available on all 400-level or postgrad Linux machines via the
usr/local/bin directory.

1 Human reasoning vs. machine reasoning

Suppose we have an agent whose information about a system is rep-
resented in a first-order language. Can we equip the agent with an
algorithm that simulates the classical consequence relation =7 If so, the
agent would be able to find, and use, consequences of the information
initially represented in its storage. Hence we would call such a simulation
a reasoning algorithm.

It turns out that there are many different ways to design reason-
ing algorithms. One can imitate the rules by which humans reason, as
in the approach called natural deduction. Alternatively one can devise
machine-oriented rules such as resolution. What’s the difference between
a human-oriented and a machine-oriented approach to reasoning? We
examine the difference at two levels — inference rules and the overall
shape of a proof.

1.1 Inference rules

What do we mean by an inference rule? An inference rule is a module in
a reasoning algorithm, and takes care of one kind of the elementary steps
that make up an argument or chain of reasoning. Suppose you have one,
or two, or a small number of wffs, called the premises. By inspecting the
syntactic form of these wifs, you may then be led by the inference rule
to form a new wff, the conclusion of the rule. For the rule to be of any
use it must be sound, in the sense that the premises (classically) entail
the conclusion.

Humans tend to use lots of different inference rules. In a natural
deduction algorithm, every connective and quantifier has two inference
rules associated with it. One is an ‘introduction’ rule saying how to
move from premises that do not contain the connective (or quantifier)
to a conclusion that does contain it, and the other is an ‘elimination’ rule
that explains how to move from premises that do contain the connective
(or quantifier) to a conclusion that does not. For example, if we consider
conjunction A, there would be one rule that says “From the premises
a and 3, conclude o A 5”7 and another that says “From the premise
a A B, conclude «”. This already large collection of rules would be
supplemented by more rules, called ‘structural’ rules, that remind us
of properties of the connectives and quantifiers, for example “From the
premise a A 3 conclude 5 A «a” since we know that order is not important
for conjunction.

The first major difference between natural deduction and machine-
oriented algorithms is that for machines we normally try to reduce the
number of inference rules, preferably to a single rule. Let us see how
a rule called resolution can be regarded as combining several of the
inference rules that humans would be inclined to use.

One of the most typical reasoning steps used by humans is universal
instantiation. Informally, this is the inference rule that allows us to infer
from “All people are female or male” that “Jonathan is female or male”.
In other words, this is the elimination rule that tells us how to get rid
of the universal quantifier in a premise. Formally, the rule says that we
may move from premise to conclusion as follows:

e Premise: Vz(«)

e Conclusion: «[c/z| where [¢/z] indicates that the constant ¢ has
been substituted for every free occurrence of = in a.

Giving the instantiation rule to machines is a disaster. Why?
Think about it. You have a universally quantified sentence. Now
you are allowed to substitute for the variable the name of absolutely

anything. You may have a million different names to choose from. A
human uses some notion of relevance, some idea of where she wants to
go, to make the selection. If we don’t know how to equip a machine
to judge relevance, it ends up substituting at random and may make
a million different substitutions instead of doing something useful with
one of them. To be effective, instantiation must be controlled by what,
for want of a better word, we usually call a strategy. Lacking a strategy,
it is better not to give machines a rule like instantiation at all.

Is the rule of universal instantiation sound? To show that the rule
is sound, we would have to show that Va(a) F alc/z|, which is just a
general version of an exercise you encountered in Lecture 14. So let’s
accept that it is sound.

Let’s look at two more inference rules that humans commonly em-
ploy. (The rule of universal instantiation is an authentically first-order
rule having no propositional analog. The rules we now look at do have
propositional analogs. We give examples in both first-order and propo-
sitional form.)

The first is a structural rule describing a property of the conditional
connective —. In propositional form:

e First premise: o — 3
e Second premise: [— 7y

e Conclusion: a — 7.

To see that this transitivity rule is sound is an easy exercise —
simply show that (o« — 8) A (8 — v) F a — 7. Can a valuation satisfy
(a = B) A (B —) but fail to satisfy o — «? Assume v is a valuation
that satisfies (&« —) A (8 —) and satisfies a but fails to satisfy ~.
Then v must satisfy 3 (lest v fail to satisfy & — () and so v must satisfy
v (lest v fail to satisfy § —). This contradicts the assumption.

Here is an informal example in first-order form:

e First premise: All tigers are cats.
e Second premise: All cats are carnivores.

e Conclusion: All tigers are carnivores.

Another inference rule we humans are addicted to is modus ponens,
which you may recall from Lecture 4. This is an elimination rule telling
us how to get rid of a conditional connective in a premise.

In propositional form:

e First premise: o — (3
e Second premise: «

e Conclusion: f.

To see that modus ponens is sound, note that (o« —) A a E S.
An informal example in first-order form:

e First premise: All little girls are cute.
e Second premise: Gertrude is a little girl.

e Conclusion: Gertrude is cute.

(We see that in first-order logic it is natural to think of combining
universal instantiation with modus ponens. In fact, the combination
avoids the problem afflicting unrestrained instantiation. Unlike the wide
choice of names we might have in applying the rule of universal instanti-
ation, the second premise here prescribes that the name ‘Gertrude’ must
be substituted.)

During the 1960s, J. Alan Robinson invented an inference rule called
resolution with unification that combines universal instantiation, transi-
tivity, and modus ponens (‘A machine-oriented logic based on the resolu-
tion principle’, Journal of the ACM 12:23-41 1965). Resolution basically
works like this. In propositional logic:

e First premise: —p V ¢
e Second premise: pV r

e Conclusion: ¢V r

In the movement from premises to conclusion, p and —p are ‘cancelled
out’. In other words, from the set {—pV ¢,pV r} we move, with the help
of the resolution rule, to the set {=pV¢q,pVr,qVr}, and the resolution
rule is sound because (—=pV ¢) A (pVr)E(—pVg) AlpVr)A(qgVr).
After all, any valuation v that satisfies -p V ¢ and p V r cannot satisfy
both p and —p and so must satisfy either ¢ or r.

How does resolution bring about a reduction in the number of previ-
ous rules? Well, for one thing, using resolution means that one restricts
yourself to working with only the connectives —, A, and V, and so the
natural deduction rules for the introduction and elimination of condi-
tionals and biconditionals no longer apply. To get rid of conditionals,
recall that p — ¢ and —pV ¢ are equivalent (see Lecture 2 Def 21 and the

4

example following it). So we can use resolution on premises that involve
conditionals by rewriting the conditionals with the help of disjunction
and negation (and in some cases conjunction). Here is an example:

e First premise: If x is a cat then z is a carnivore.
e Second premise: If z is not a cat then z is uncuddly.

e Conclusion: z is a carnivore or x is uncuddly.
To see that this inference works by resolution, rewrite as follows:

e First premise: ~Cat(x) V Carnivore(x)
e Second premise: Cat(z)V Uncuddly(x)

e Conclusion: Carnivore(z) V Uncuddly(z)

The complementary pair C'at(z) and —Cat(z) have been cancelled
out, and the resolvent that remains is added to the existing clauses.
That transitivity is a special case of resolution follows if we consider
an example with premises —p V g and —q V r (these being the rewritten
‘clausal’ forms of p — ¢ and ¢ — 7). Modus ponens is the special case
with premises —p V ¢ and p.

We'll say more about the first-order case and resolution ‘with unifi-
cation’ below.

1.2 The use of contradictions

Another difference between human reasoning and algorithms intended
for machines has to do with the use of contradictions. Humans have a
preference for direct proofs rather than proofs by contradiction. Let’s
look at an example. Suppose you want to prove that if x and y are odd
integers, then x 4 y is even.

Example 1 A direct proof would proceed as follows:
Proof. Suppose x and y are odd integers.
Then x =2k + 1 and y = 2m + 1 for some integers k and m.
Thusx+y=(2k+1)+ (2m+1) =2(k+m+1).
So x +y is even. m

Example 2 On the other hand, a proof by contradiction would look like
this:

Proof. Suppose x and y are odd integers.

Then x =2k + 1 and y = 2m + 1 for some integers k and m.

Now there are exactly two possibilities: x + y is either even or odd.
Assume x + y is odd. (We examine the bad possibility.)

Then x +y = 2n+ 1 for some integer n.
Thusx=c4+y—y=2n+1—-2m—1=2(n—m).

Thus x must itself be even.

But this contradicts the fact that x is odd.

So eliminate the bad possibility and conclude that x + y is even. m

Would you agree that, from a human perspective, the direct proof
is simpler, easier, clearer and in every way more natural? But now
think of it from a machine’s perspective. A machine’s big problem when
doing some sort of computation is knowing when to stop. If the machine
tackles every problem by trying to do a proof by contradiction, then
we have a built-in termination condition, namely the production of the
contradiction!

Resolution lends itself to using contradictions as termination con-
ditions. How? Resolution looks for complementary pairs of premises
like p and —p and eliminates them. If resolution ever gives an empty
conclusion, it would mean that the last resolution step had involved a
premise like p and premise like —p, and these two premises together give
a contradiction. So whenever resolution gives an empty conclusion, it is
a signal to stop!

Let’s be sure we understand what it would mean if resolution pro-
duced an empty conclusion. Since resolution is sound, the premises
classically entail the conclusion. So any model of the premises must be
a model of the conclusion. If the conclusion is a contradiction having
no models, then the premises couldn’t have had any models either. So
resolution that produces an empty conclusion tells us the premises were
unsatisfiable. This is the point at whicc to remember something from
Lecture 4, namely the Corollary to the Compactness Theorem, or more
particularly a trick we used in the proof of the Corollary. We showed
there that ' = g iff ' U {—/} is unsatisfiable. Thus it is possible, by
showing something to be unsatisfiable, to actually show that one thing
entails another.

So here in a nutshell is the idea of a reasoning algorithm designed for
machines:

Algorithm 3 To show that the premises I' entail the conclusion [, we
use resolution to show that the premises T'U{—f3} are unsatisfiable, and
this is done by deriving an empty conclusion, which tells the algorithm
to terminate.

1.3 A partnership of agents

Most Al researchers want to design autonomous machine agents able to
cope with the world more or less the way humans do. But there is also
another perspective. Consider the analogy of flight. Birds fly by flapping
their wings, and do a marvellous job of it, as we can see by watching a
seagull lazily ride the wind. On the other hand, aeroplanes fly by means
of a spinning fan (i.e. propellor or jet turbine) and do a pretty good job,
carrying enormous loads for long distances. Neither is the unique right
way. Both are good solutions to the problem of flight, having their own
separate advantages and disadvantages. We should not feel obliged to
design aeroplanes that fly by flapping their wings.

Perhaps a partnership between human and machine reasoners could
combine the strengths of both. Human reasoning tends to use heuristics
or some notion of relevance to cut out large parts of the search space and
arrive at a solution, whereas machines tend to proceed more blindly but
can do lots of steps very swiftly. Clearly, the two complement each other.
Even when the human is limited to to showing that o F (3, i.e. is making
classical inferences rather than jumping to defeasible conclusions, there
is still scope for intuition to direct the reasoning and this, because it
relies on the idea of relevance that we don’t understand too well, is
something we have not been able to program into machines yet. If a
human-machine partnership is the way we decide to go, then it makes
sense to have the human and the machine each playing to their different
strengths. Let the human contribute the strategy and the machine the
speed and reliability.

The automated reasoning program OTTER (Organised Techniques
for Theorem-proving and Effective Research) has been used as a research
partner by several mathematicians, computer scientists, and logicians to
discover many original results, most of which are reported in the pages of
the Journal of Automated Reasoning. For a very digestible introduction,
I recommend Wos, Overbeek, Lusk and Boyle: Automated Reasoning:
Introduction and Applications, 2nd edition, McGraw-Hill 1992. (I have
drawn freely upon this book in what follows.)

2 Talking to OTTER

The logic languages used thus far have been designed for humans. OT-
TER is a program that can cope only with ASCII symbols. To talk with
OTTER, we are going to have to modify our notation somewhat. We
shall now describe what is called a clausal language, with some special
features determined by the need to talk to OTTER.

Our knowledge representation language will typically have transpar-

ent atoms, because we will usually want it to be a first-order language.
As an aid to the human using OTTER, the constants, predicate symbols
and function symbols are often chosen to be strings that remind us what
they stand for.

Notation 4 We will use only negation, conjunction, and disjunction
(and rewrite in terms of these connectives any wffs involving conditionals
or biconditionals).

e Negation: Consider the atom Female(Kim). The negation is not
written as —Female(Kim) but with a hyphen as -Female(Kim).

e Disjunction: To say ‘Kim is female or male’ we do not use V
to write Female(Kim)V Male(Kim) but instead use a vertical bar to
write Female(Kim) | Male(Kim).

Definition 5 (Literal) Atoms and negations of atoms are called (pos-
itive or megative) literals.
A pair p and —p are complementary literals.

Complementary literals are important because, if we have their con-
junction and not merely their disjunction, they signal unsatisfiability,
i.e. contradiction. We shall say more about the first-order case in the
next section, when we discuss clausal form.

Definition 6 (Clause) The disjunction of zero, one, or more literals
is called a clause. (For the sake of OTTER, we should end every clause
with a period.)

The clause with zero literals is called the empty clause.

A clause containing 0 literals is one way of indicating that we have
a contradiction. If this seems strange, think of it as follows. Pick your
favourite contradiction and call it, say, L. Consider any clause « |
f. This can be written equivalently « | 8 | L. After all, the third
alternative 1 cannot be made true by any valuation, so a valuation v
(or a state s) will satisfy « | § iff it satisfies a | | L. So let’s agree
that every clause actually does contain the contradiction | as one of
the alternatives, but that we simply choose to leave L implicit. In the
case of the ‘empty’ clause, we may have gotten rid of o and 3 but we
still have the contradiction L left. Hence we think of an empty clause
as representing the contradiction.

Notation 7 Conjunction: Conjunctions are indicated not by using
the symbol N but instead by writing clauses on successive lines. We call
such a conjunction a set of clauses. So to say that Kim is a female and
Kim is a parent, we write the set of clauses:

Female(Kim).

Parent(Kim).

In order to say that Kim is married to Bill and (Kim is Bill’s husband

or Bill is Kim’s husband), we would write the set of clauses:

MarriedTo(Kim, Bill).

Equal(Kim, husband(Bill)) | Equal(Bill, husband(Kim).

In this example we have used a function symbol (husband, 1) and
a binary predicate symbol (Equal, 2). The equality predicate is useful
but tricky, because special measures need to be taken if the reasoning
algorithm is to use it wisely. We will say more in due course about
demodulation and paramodulation.

2.1 Rewriting wffs in clausal form

The basic idea of a clausal language is that we express everything as sets
of clauses This clausal form may be thought of as a first-order version
of conjunctive normal form. But how do we translate arbitrary wffs into
clausal form?

1. We know that a literal on its own is a clause (called a unit clause).
2. Similarly a disjunction of literals is a clause.
3. A conjunction of clauses is represented as a set of clauses.

4. In order to represent the negations of literals, of clauses, and of
sets of clauses we need to take the negations inwards, so that they
end up applying only to atoms. To do this we exploit the facts
(see Lecture 2 Exercise 22(4) pages 13/4) that for any wifs a and

B

& (¥ = (X

e ~(aV])
e <(aAp)

=-aA-f
= -a VvV p.
Thus we may express ‘It is not the case that Kim is not female’

simply by the clause
Female(Kim).

We may express ‘It is not the case that Kim is female or a parent’
by the set of clauses

-Female(Kim).
-Parent(Kim).

And we may express ‘It is not the case that Kim is female and a
parent’ by the single clause

-Female(Kim) | -Parent(Kim).
(Note: the period comes at the end of the clause, not after every

literal.)

. In order to express conditional and biconditional statements,
we use the facts (Lecture 2 Exercise 22(4) pages 13/4) that

e a—f=-aV]f
cacf=(a— BB a)

Thus we may express ‘If Kim is a mother then Kim is female’ by
-Mother(Kim) | Female(Kim).

And we may express ‘Kim is the wife of Bill iff Kim is married to
Bill’ by the set of clauses

-Equal(Kim, wife(Bill)) | MarriedTo(Kim, Bill).
-MarriedTo(Kim, Bill) | Equal(Kim, wife(Bill)).
. A very useful kind of conditional sentence is that containing two
or more preconditions, e.g. having the form (o A) — . We

can express such a sentence as a clause by noting that (as shown
in Lecture 2 Exercise 22(4) pages 13/4)

o (aNp)—=y=—(aNPB)Vy=—-aV[BVry.

Thus we may express ‘If Kim is a female and a parent, then Kim
is a mother’ by the clause

-Female(Kim) | -Parent(Kim) | Mother(Kim).

. Sometimes we want to use a statement in which a single precon-
dition has multiple consequences, e.g. a statement having the
form o« — S A~. We can express such a sentence as a set of clauses
by noting that (as shown in Lecture 2 Exercise 22(4) pages 13/4)

e a— (BAY)=-aV (BAY)=(maVB)A(-a V).

10

Thus we may express ‘If Kim is a mother then Kim is a female and
a parent’ by the set of clauses

-Mother(Kim) | Female(Kim).
-Mother(Kim) | Parent(Kim).

8. So far we have carefully avoided variables and quantification.
Variables are assumed to begin with one of the following letters:
u, v, w, T, y, 2. Every clause in which variables occur is regarded
as implicitly universally quantified.

e Thus we express ‘Everyone who is a mother has a child’ by
-Mother(z) | HasChild(z).
In this clausal version of
Va(Mother(x) — HasChild(z))

the quantifier is not seen but you should imagine it to be
lurking invisibly on the left.

e We express ‘For all z and y, if = is married to y then x is the
wife or husband of y’ by the clause

-MarriedTo(z, y) | Equal(z, wife(y)) | Equal(z, husband(y)).

9. If universal quantifiers are invisibly present on the left of every
clause containing variables, how can we express existential quan-
tification? Well, we have already seen function symbols in use and
now we shall use them in a special new way to get rid of existential
quantifiers. The idea is that a function associates a unique object
with each given object.

e This allows us to rewrite a wif such as

VadyP(z,y)
as

VaP(z, f(x))
where f(x) stands for the object to which x is related and
whose value perhaps depends on the value of . Here f is
supposed to be a new function symbol, called a Skolem' func-
tion, which is introduced specially for quantifier elimination
and not because there is some functional relationship in the
system that you wanted to model from the start. In other
words, we change the alphabet of the knowledge representa-
tion language by adding in some symbols that help us produce

! After the logician Thoralf Skolem.

11

clauses but which don’t have very specific meanings known
ahead of time.

e For example, we express ‘Every mother is married to someone’
by the clause

-Mother(z) | MarriedTo(z, husband(x)).
In this clausal version of
Va(Mother(x) — Jy(MarriedTo(zx,y)))

we have simulated the existential quantifier with the help of
the unary function symbol (husband, 1). The new function
symbol had to be unary since y depended at most on z. If
the existentially quantified y was in the scope of two univer-
sal quantifiers Vo and Vz’, then we would have used a binary
function symbol in the place of y, with x and z ~ as its argu-
ments.

e If the existential quantifier preceeds any universal quantifi-
cation, or is alone, we would simulate it by a O-ary function
symbol. Recall from Lecture 13 page 26 that O-ary function
symbols are just constants.

Thus we express JxP(z) simply as P(a).
Similarly we express ‘There exists in the alphabet a letter

that occurs before every other letter’ which can be written
more formally as

JyVzNoLaterThan(y, x)
by the clause
NoLaterThan(a, z).

We have cleverly used the Skolem constant ‘a’ as the 0-ary
Skolem function simulating 3, because the thing whose ex-
istence is being claimed does not depend on the particular
value of . This symbol ‘a’ would not have been one of the
constants we originally put into the knowledge representation
language as a name for some component of the system of in-
terest. Since ‘a’ is added to alphabet only to eliminate an
existential quantifier, we may be quite unsure of what it de-
notes. But that doesn’t worry us, because we would be just
as unsure what the existential quantifier was referring to, and
‘a’ is just intended to express what the existential quantifier
expressed, no more.

10. The order of quantifiers is important. ‘There exists some y such
that, for every z, P(y, z)’ becomes a clause such as

12

11.

12.

13.

P(a, z).

However ‘For every z there is some y such that P(y,)’ is expressed
by a clause such as

P(f(z),).

Where the existential quantifier Jy follows the universal quantifier
Vz, the value of y depends on that of z, so that the function needs
to take x as argument.

The negation of quantifiers is handled with the aid of the equiv-
alence V1 P(z1) = =321 P(x1) which may be rewritten as:

o Vi P(x1) = Jz1-P(z1)

What this means is that a wif of the form —Vz P(z;) will always
be rewritten first as 3x;—P(x;) and then, using Skolemisation to
eliminate the existential quantifier, as =P(a), for some new con-
stant a.

What do complementary literals look like in the first-order
case? We know that in propositional logic p and —p are comple-
mentary literals. Suppose we have an atomic formula P(z). Then,
since clauses are always universally quantified, our complementary
literals must be

VrP(x)
and
-V P(x)

where the former is rewritten with an invisible Vx and the latter
must be rewritten, for clausal form, as 3z—P(x) and then as = P(a)
for some Skolem constant a. So we get the pair P(z) and —P(a).

Complementary literals can appear in the same clause, which is
harmless because it is like saying p V —p, or they can appear in
different clauses. If they appear in two different unit clauses, we
get unit conflict.

By unit conflict we mean that our set of clauses contains two
(unit) clauses that are complementary literals. In other words,
remembering that a set of clauses is really a conjunction of clauses,
we have unit conflict when we have the conjunction of a pair like
P(z) and —P(a), which clearly form an unsatisfiable set of clauses
because the former says “Everything has property P” while the
latter says “Item a does not have property P”. No interpretation

13

can be found in which a variable assignment will simultaneously
satisfy Vo P(z) and —P(a).

Similarly, we would have unit conflict if we have a clause consisting
of a single literal like P(z) and another clause consisting of the
single literal =P (x), because these too are complementary literals.
P(z) and —P(z) are an unsatisfiable set of clauses because the
former is satisfied only in an interpretation (D,den) such that
den(P,1) = D whereas the latter is satisfied only if den(P,1) = @.

Exercise 8 1. Convert the following statements to clauses:

e if Mother(Mary, Sam) and Sister(Linda, Mary) then Aunt(Linda,
Sam)

e if Mother(z, y) and Sister(z, z) then Aunt(z, y)
(Note that if the variables are interchanged in the Sister lit-
eral, then z could be an aunt but z could also be an uncle.)

e if Mother(z, y) and (not Sister(x, z)) then (not Aunt(z, y))

e if Mother(z, y) or Father(z, y) then Parent(z, y)

e not(Positive(x) and Negative(z))

o for every x there exists some y such that GreaterThan(y, x)

e there exists some y such that for every x GreaterThan(y, x)

e for all x and y there exists some z such that (z = +y)

e for each x there is some y such that for all z (if x<z then y<z)

e there is some x such that for all y there exists some z such
that (y+z > x) or (y+z = x).

3 Knowledge representation for OTTER

To use an automated reasoning program, you must supply it with various
clauses as input. (We're assuming that we are not dealing with an au-
tonomous agent that has sensors with which to make observations and
a way to transform the iconic representations produced by perception
into symbolic representations. We're just dealing with a deaf-dumb-
and-blind agent that gets its symbolic representations from us. To this
poor agent, the strings of symbols are without meaning, which is why
we have to use all sorts of tricks to help it reason sensibly.)

The input then grows as more clauses are generated by resolution,
and the growth terminates when the empty clause is produced (or rather,
when a unit conflict is achieved, since this would produce the empty

14

clause in one more step). To help the input grow in the direction of
adding the empty clause rather than just grow randomly, we group the
input clauses into different sets, where each set of clauses has a particular
purpose in the grand scheme.

3.1 Usable list

The first set of clauses, which we will call the usable list, contains the
general description of the problem domain. (Mathematicians would re-
gard these clauses as their ‘axioms’.)

By way of example, let us consider a baby puzzle about the jobs
people might hold. In the metalanguage, the puzzle is the following.

Roberta and Steve hold, between them, two jobs.
Each has one job.

The jobs are teacher and doctor.

The job of doctor is held by a male.

What is Steve’s job?

Now the trick is to give enough information to OTTER without in-
cluding too much that is irrelevant to the present purpose. Here are the
clauses that naturally go into the usable list:

1. HasJob(Roberta, Doctor) | HasJob(Roberta, Teacher).
2. HasJob(Steve, Doctor) | HasJob(Steve, Teacher).

3. -HasJob(Roberta, Doctor) | -HasJob(Roberta, Teacher).
4. -HasJob(Steve, Doctor) | -HasJob(Steve, Teacher).

5. HasJob(Roberta, Teacher) | HasJob(Steve, Teacher).
6. HasJob(Roberta, Doctor) | HasJob(Steve, Doctor).

7. -HasJob(Roberta, Teacher) | -HasJob(Steve, Teacher).
8. -HasJob(Roberta, Doctor) | -HasJob(Steve, Doctor).
9. -HasJob(z, Doctor) | Male(z).

10. Female(z) | Male(z).

11. -Female(z) | -Male(z).

12. Female(Roberta).

13. Male(Steve).

15

Let’s check why each clause is included. Clauses (1) and (2) say that
Roberta and Steve each have at least one of the two jobs. Clauses (3)
and (4) say that neither Roberta nor Steve has both jobs. The possibility
still exists that both people have the same job, so clauses (5) and (6)
say that no job is left out, while clauses (7) and (8) say that no job is
held by both people. Clause (9) links the job of doctor with the sex of
the worker.

It would be easy to stop after clause (9), because to us humans it is
so obvious that every person is either female or male, but we should re-
member to tell the program this, hence clauses (10) and (11). Lastly, we
may easily forget that only human common sense tells us that Roberta
is the name of a female and Steve the name of a male, and we need to
tell the program this, hence clauses (12) and (13).

3.2 Set of support

Once we have the usable list, we need a further list of clauses, called the
set of support or list(sos), into which we place two kinds of clauses.

First, we include clauses that represent some sort of special hypothesis
that distinguishes the present problem from similar problems in the same
domain. As our analysis below will show, we could sensibly take clause
(9) to be such a special hypothesis, but since this is not immediately
obvious we will leave it in the usable list. As another example, suppose
you are a caterer who plans parties and receptions for people. You
would have a lot of background information (usable list) about foods
and beverages and so on. Now suppose you are told that the particular
party’s purpose is to celebrate a birthday. This is narrowing information
that reduces the domain you need to take into account from parties
in general to one type of party. So this would give you your special
hypothesis.

Second, we include clauses representing the denial of the goal. The
idea is that OTTER is going to search for a contradiction, in order to
have a built-in termination condition. How can we arrange for all proofs
to be proofs by contradiction? Well, we use the fact that if « F S then
a A= is a contradiction. So if we are hoping that OTTER will help us
show that § may be concluded from «, we add to « the questionable as-
sumption that =3 and then let OTTER find a contradiction. Ultimately,
OTTER would find a contradicition by producing an empty clause. In
fact, OTTER stops one step earlier, when it finds a unit conflict, which
you will recall means that it finds two clauses each of which contains a
single literal and these have the form p and —p for some atom p.

Returning to the baby jobs puzzle, recall that we want to find out
what job Steve holds. Suppose we suspect that Steve might be the

16

doctor. Then we could add to the set of support the clause
-HasJob(Steve, Doctor).
This denial of the goal plays a crucial role in what OTTER does.
Let’s see how OTTER would proceed.

3.3 Solving the jobs puzzle

Let the denial of the goal be clause (14).
From clauses (14) and (6) we get clause (15):
HasJob(Roberta, Doctor).
This makes sense because clause (6) said that either Roberta or Steve
was the doctor, and clause (14) said it’s not Steve.
Now from clauses (15) and (9) we get clause (16):
Male(Roberta).
After all, clause (15) said that Roberta is the doctor and clause (9)
said the doctor is male.
From clauses (16) and (11) we get clause (17):
-Female(Roberta).
After all, clause (11) said that males are not female.
And now we have a unit conflict between clauses (17) and (12), so
that we have found a contradiction.
Therefore Steve must be the doctor.

3.4 Discussion

The jobs puzzle was easy, and humans see immediately that Steve must
be the doctor. The program has to put in the intermediate steps, how-
ever, and so the program’s solution may look surprisingly long.

If we think about our own instinctive solution of the puzzle, it be-
comes clear that one particular clause stands out as enabling the solu-
tion, namely clause (9) which tells us that the doctor has to be male.
The other clauses in the usable list tell us about the situation in general,
but clause (9) is the fact that tells us about this particular situation. We
would, with the benefit of hindsight, probably all agree that this clause
could have been placed in the set of support as a special hypothesis.
As it happens, no harm was done by leaving it in the usable list, but
perhaps this is a good moment to consider the effect of placing a clause
in the set of support.

3.4.1 The set of support strategy

There are several ways in which to communicate to OTTER that it
should concentrate on certain concepts or facts. For instance, one tech-
nique is called ‘weighting’, and we discuss that later in the section on
strategies. But the most basic trick, which we always use, consists of

17

putting important clauses into list(sos) instead of the usable list.

Why do we put the denial of the goal and the special hypothesis into
the set of support rather than into the usable list?

Each reasoning step used by the program involves cancelling out
complementary literals in different clauses, and we say more about this
in the section on resolution that follows. But for now, the key point
is that OTTER will not apply such a resolution step unless one of the
clauses involved has support. A clause has support if either it is one
of the original clauses that was placed in the set of support or else it
was obtained by applying resolution to clauses at least one of which had
support. Thus support is inherited in the sense that every step leading
to the addition of the new supported clause has involved a clause that
has support.

When we divide our problem description into the usable list and
the set of support, it is important that we be confident that the usable
list is a satisfiable set of clauses, i.e. does not entail a contradiction.
Then the set of support strategy makes sense, because it prevents the
program from simply expanding a set of satisfiable clauses (the usable
list) without hope of termination by discovery of a contradiction.

By requiring that the reasoning program involve the set of support
at every step, and by including the denial of the goal in list(sos), we
ensure that the program’s attack on the problem is goal-directed. If
Steve is mentioned in the goal, we will ensure that the program does not
endlessly toy with clauses about Roberta, ignoring Steve. In this way
we get around the problem that plagues universal instantiation, namely
the problem of deciding what constant to substitute for the variable in
a general claim.

3.4.2 Redundancy and independence

Did we need to put in all 13 clauses of the usable list in order to solve the
jobs puzzle? Mathematicians have traditionally attached importance to
using ‘independent’ axioms, because reducing the number of initial as-
sumptions to a minimum achieves an economy they have been trained
to interpret as elegance. Far from being independent, the clauses in our
usable list exhibit redundancy. For example, clause (4), which says that
Steve cannot be both teacher and doctor, can be produced by resolv-
ing (cancelling out complementary literals in) clauses (1), (7), and (8).
Should we prefer a usable list in which clause (4) is absent?

Not at all. Redundancy often contributes to efficiency, contrary to
the misconception that redundancy and efficiency are opposites. It is
often better to have a fact present than to be forced to infer it.

On the other hand it is good to say things more generally, for example

18

to replace the first 2 clauses by the single clause
HasJob(z, Doctor) | HasJob(z, Teacher).
The preference for generality will be taken up when we discuss ‘sub-
sumption’ in the section on strategies.

Exercise 9 A Lewis Carroll problem:

~

The only animals in this house are cats.

Every animal that loves to gaze at the moon is suitable for a pet.
When I detest an animal, I avoid it.

No animals are carnivorous, unless they prowl at night.

No cat fails to kill mice.

No animals ever take to me, except those that are in this house.
Kangaroos are not suitable for pets.

None but carnivores kill mice.

© »® NS G e

I detest animals that do not take to me.

~
S

Animals that prowl at night always love to gaze at the moon.

The goal is to prove that ‘I always avoid a kangaroo’, but don’t worry
about that for now — we’ll come back to it after the next section. For
now we focus on the input.

First, write down the clauses that go into the usable list. To do
this, use predicates that specify classes of animals. For example, the
first statement becomes the clause

-InHouse(z) | Cat(z).

Next, write down the set of support.

Finally, redo your representation of the problem by using a single
binary predicate symbol (IsA, 2), where IsA(x, y) is taken to mean ‘x is
a member of class vy’.

4 How resolution can be done

There are various different forms of resolution. Let’s try to describe
these clearly but without attempting to be mathematically precise.

19

4.1 Binary resolution

Binary resolution is the kind of resolution we’ve considered thus far, and
showed to be sound. It is an inference rule that takes two clauses, one
containing a literal L and the other containing the literal -L, and builds a
new clause by cancelling the complementary literals while keeping all the
remaining literals. For example, given pV ¢ and —pV r, binary resolution
delivers the ‘resolvent’ clause q V 7.

Remark 10 Note that the old clauses are not destroyed. Instead the re-
solvent is added to them. Thus the number of clauses grows as resolution
adds new clauses.

Binary resolution in a propositional language is simple, but what
if we use a first-order language? Well, let’s start with an easy case.
Suppose the following two clauses are given:

Female(Roberta) | Rich(Steve).
-Female(Roberta) | -Male(Roberta).

Now binary resolution would match the two literals that talk about

whether Roberta is female, and add the new clause:
Rich(Steve) | -Male(Roberta).

This was essentially just the propositional case again. Now let’s
consider a more interesting situation, in which we are given the following
two clauses:

Female(Roberta) | Rich(Steve).
-Female(z) | -Male(z).

To match the two literals having the predicate symbol Female re-
quires a process called unification, which ‘instantiates’ the universally
quantified clause in a sensible manner, so that we are then taken back
to something like the previous example and can cancel the two literals
involving Female.

4.2 Unification

Definition 11 Two literals L and M can be unified if there is a way to
substitute a term for a variable that makes L and M identical (except
possibly that one of the literals is the negation of the other).

For example, it is possible to unify the clauses
Female(Roberta) | Rich(Steve).
-Female(z) | -Male(z).
The literals to be unified are obviously Female(Roberta) and -Female(z),
and the process of unification involves substituting the constant Roberta
for the variable x throughout the second clause, giving

20

Female(Roberta) | Rich(Steve).
-Female(Roberta) | -Male(Roberta).

Now resolution can take over and cancel literals.

Unification always uses the most general way to substitute a term
for a variable, in other words doesn’t substitute a constant unless it has
to, preferring to keep variables wherever possible. For example, consider
the clauses

Female(y) | Rich(Steve).
-Female(z) | -Male(z).

It is possible to unify Female(y) and -Female(z) in lots of different
ways. We could substitute Roberta for both y and z, or we could substi-
tute Steve for both y and z, or we could substitute a new variable z for
both y and z, or we could simply substitute y for x, or we could simply
substitute x for y. The last two are the most general ways to unify the
given literals, and so either of them could be chosen, giving say

Female(z) | Rich(Steve).
-Female(z) | -Male(z).

Now resolution would build the resolvent
Rich(Steve) | -Male(z).

Summary 12 Unification never substitutes a term for a constant, only
for a variable, and it doesn’t substitute a constant for the variable unless
it has to, preferring to keep things as general as possible.

OTTER applies unification together with resolution in a single step,
rather than first unifying and then applying resolution to the resulting
clauses.

Remark 13 Two cautions apply: A unification algorithm must avoid
tying itself into knots by trying to substitute for a variable x a term in
which x itself appears, say f(x). Also, since a variable appearing in a
clause is always bound (i.e. is within the scope of a quantifier), there
18 no connection between the x in one clause and the same symbol x in
another clause. To avoid confusion when it comes to unification, the
unification algorithm renames variables so that no variable is shared by
two clauses.

We now look at ways in which to do a lot of binary resolutions all at
once.

4.3 UR-resolution

The idea behind Unit Resulting resolution is that it can apply to lots
of clauses at a time and that it produces something really nice, namely
a new clause containing just one literal (a unit clause).

21

Definition 14 UR-resolution is an inference rule that applies to a
set of 2 or more clauses, of which one must be a non-unit clause (i.e.
contain two or more literals) while the remaining clauses must all be
unit clauses. The nonunit literal must contain exactly k + 1 literals if
there are k other clauses amongst the premises. It must be possible to
pair off, except for one literal, the literals of the nonunit clause with the
unit clauses in such a way that each literal has the same predicate symbol
as its paired unit clause, the two members of each pair are one of them
positive and the other negative, and the two members of each pair must

For example, suppose the premises are
-MarriedTo(z, y) | -MotherOf(z, z) | FatherOf(y, z).
MarriedTo(Thelma, Pete).
-FatherOf(Pete, Steve).
Now UR-resolution builds the new additional clause
-MotherOf(Thelma, Steve).
You may visualise UR-resolution as a sequence of binary resolutions
each involving exactly one unit clause, but of course the point of UR-
resolution is that it does all this simultaneously, in one fell swoop.

4.4 Hyper-resolution

Hyper-resolution comes in two flavours, positive and negative. We de-
scribe positive hyper-resolution. (To see what negative hyper-resolution
is, just replace every ‘positive’ with ‘negative’ and vice versa.)

Definition 15 In (positive) hyper-resolution the premises are a set of
clauses of which one is either a negative clause (i.e. a clause containing
only negative literals) or a mized clause (i.e. a clause containing both
positive and negative literals). Call this clause the nucleus. The re-
maining premises must be positive clauses, which we call the satellites.
There must be exactly as many satellites as there are negative clauses in
the nucleus, but the satellites need not all be different. The idea is that
each negative literal in the nucleus is paired off with a literal in a satel-
lite in a way that allows unification. Cancelling then produces a positive
clause as resultant.

For example, suppose the premises are
-MarriedTo(z, y) | -MotherOf(z, z) | FatherOf(y, z).
MarriedTo(Thelma, Pete) | OlderThan(Thelma, Pete).
MotherOf(Thelma, Steve).
The nucleus is the first clause, and its negative literals can be paired
off with literals in the satellites so that simultaneous substitution of
Thelma for z, Pete for gy, and Steve for z allows resolution to build

22

FatherOf(Pete, Steve) | OlderThan(Thelma, Pete).

The big difference between UR-resolution and hyper-resolution is
that hyper-resolution does not have to deliver a unit clause. Just as
with UR-resolution, you can think of hyper-resolution as combining a
lot of binary resolutions into a single step, and hyper-resolution will
sometimes produce the same resolvent as UR-resolution would.

4.5 Factoring

OTTER automatically removes duplicate literals from a clause. In
fact, if the literals in a clause are not identical but unification would
make two of the literals identical then they are automatically unified
and the duplicate is removed — a process called factoring. To see
why this is not merely an economy measure but necessary, consider the
following premises:

P(2) | P(y).

-P(z) | -P(y).

Now we should be able to produce a contradiction (empty clause)

from these premises. (Why?) But binary resolution would merely add
to the premises a resolvent like

P(z) [-P(y).
Further binary resolution might add another the new clause
-P(z) | P(y).

And now binary resolution just cycles around these four clauses.
Factoring would unify the two literals in the first clause and the two
literals in the second clause to give the set of premises:
P(z).
-P(z).
Now we have unit conflict and binary resolution delivers the empty
clause.

Exercise 16 1. Recall the Lewis Carroll problem having ten facts
about animals and the goal of proving that I always avoid kan-
garoos. Now consider the clauses you produced.

e Give a proof that the facts entail ‘I always avoid kangaroos’
using only hyper-resolution.

e Give a proof using only UR-resolution.

e Give a proof using only binary resolution, and this proof must
be different from the previous two proofs.

2. A number of towns are connected by roads. Trucks are allowed to
drive on some of the roads but not on all of them. Here are the
basic facts.

23

(a) If town z is connected to town y by road z, and trucks are
allowed on z, then you can get to y from x by truck.

In clausal form:
-Connected(z, y, z) | -TruckOk(z) | GetTo(z, y).

(b) If town x is connected to y by z, then y is connected to x by z.

(c) If you can get to y from z, and you can get to z from y, then
you can get to z from z.

(d) Leadville is connected to Gorm by the Woodland Path.
(e) Gorm is connected to Lewistown by the King’s Highway.
(f) Leadville is connected to Lewistown by the Main Pike.
(9) Lastchance is connected to Astor by the Mudpath.

(h) Lastchance is connected to Gorm by Miles Road.

(i) Trucks are allowed on the Mudpath.

(j) Trucks are allowed on the Main Pike.

(k) Trucks are allowed on Miles Road.

(1) Trucks are always allowed on either the King’s highway or
the Woodland Path — that s, each day it might be a different
road, but one of the two roads is always usable.

(m) Leadville and Astor are not connected by the Main Pike.
Give

e a proof showing you can get from Astor to Gorm

e a proof showing you can get from Astor to Lewistown.

5 More strategies

A strategy is a way to guide an automated reasoning program’s attack
on a problem. There are four kinds of strategy:

e Direction strategies help the program to decide which clause to
focus on next. The set of support strategy is such a strategy, and
we always use it. Another direction strategy that is often useful is
weighting, where the idea is that clauses with lighter weights are
preferred choices for the next resolution step.

e Restriction strategies discourage or prevent the program from con-
sidering certain combinations of clauses. Weighting can be used
as a restriction strategy too, because clauses with heavier weights
are avoided if possible.

24

e Pruning strategies address the problem that the program can very
quickly accrue an overwhelming amount of information, much of
which may be discardable because it duplicates what is already
known. Subsumption tackles the case in which the duplication is
not obvious.

e Equality strategies arise because the equality predicate is particu-
larly prone to spawn an avalanche of unneeded information. One
needs sometimes to substitute equals for equals in a literal, but
where does this end? In a mathematical context, for example,
where addition is as usual, a reasoning program would need to be
able to infer that 0+a = a, that 04+-04a = a, that 0+a+0 = a, and
so on, but should somehow be restrained from simply generating
these equalities ad nauseam. Demodulation was invented to lessen
this problem, and paramodulation is a variation on the idea.

5.1 Weighting

OTTER allows you to use weighting to assign priorities to terms or
clauses. For example, in the jobs puzzle you can assign a light weight
to ‘Roberta’ in such a way that the program will always choose, as the
next clause on which to base an inference, a clause containing the term
‘Roberta’ in preference to any other clause. Weighting may be used not
just as a direction strategy but also as a restriction strategy, because
you can assign a heavy weight to Roberta so that clauses containing the
term ‘Roberta’ are ignored.

If you do not assign weights yourself, OTTER assigns priorities based
on symbol count, so that short clauses are considered before long clauses,
roughly speaking. To assign weights, use ‘weight list(pick and purge)’
in the input file as illustrated on p16 of the OTTER Reference Manual
and in the sample input file of Section 2.3 below.

5.2 Subsumption

The idea behind subsumption is that if we have already inferred o and
now go on to infer S where o F (3, then it may be a good idea not to
retain the weaker [since for future use we have the stronger o«. However,
we don’t want to take this to the absurd extreme of discarding all such
5, because that would nullify all inferences. Where do we draw the line?

Subsumption discards a clause that duplicates or is ‘less general than’
another clause. One clause subsumes a second clause if the variables in
the first can be replaced by terms in such a manner that the resulting
clause is a (not necessarily proper) subclause of the second.

Thus

25

Older(father(z), z).
subsumes
Older(father(Ann), Ann).

because the second clause is an instance of (therefore less general
than) the first clause. In this sense, subsumption builds in a preference
for generality (just as unification does — recall that unification preferred
substitutions that were as general as possible).

Another example:

-WifeOf(Kim, Bob) | Female(Kim).
does not subsume
-Wife(z, y) | Female(z).

because the second clause is more general than the first. In fact the
second clause subsumes the first.

Here is another example in which the second clause subsumes the
first:

-WifeOf(Kim, Bob) | Female(Kim).
Female(Kim).

There are different kinds of subsumption, of which the most impor-
tant is forward subsumption, in which a newly generated clause is dis-
carded because a previously generated clause subsumes it. You would
normally set the flag ‘for sub’ in the input file as indicated in table 5
pl4 and on p20 of the OTTER Reference Manual.

5.3 Equality

The treatment of equality is the most technically complex part of auto-
mated reasoning, and we do no more than take a brief glimpse at two
approaches. The sections that follow illustrate how and why to use tech-
niques such as demodulation and paramodulation, but a serious student
wishing to acquire competence would need to read more widely and get
lots of practice.

The idea is that demodulation and paramodulation are ways to cause
equality substitutions to take place, and can be regarded as a strength-
ening of unification. We use demodulation or paramodulation because
we do not want the program to be trapped in a senseless cycle of substi-
tuting equals for equals. We may, for example, have a clause describing
symmetry of equality, -Equal(z, y) | Equal(y,). This should not lead
the program to blindly substitute = for y in all clauses containing 3. But
sometimes it should, in some literals.

Demodulation is simpler than paramodulation, and we focus our at-
tention mainly on demodulation. The chief differences between demod-
ulation and paramodulation are that

26

e demodulation requires the equality literal that authorises the sub-
stitution to be alone in a unit clause while paramodulation does
not,

e demodulation works in only one direction while paramodulation
works in both,

e demodulation discards the original version of the clause in which
the substitution occurred while paramodulation keeps both the old
and the new versions, and

e a successful application of demodulation usually triggers further
attempts at demodulation while paramodulation stops after a sin-
gle equality substitution.

6 The larger jobs puzzle

Let us illustrate, by working through a big example, strategies such as
set of support and demodulation. Consider the following puzzle.

There are four people: Roberta, Thelma, Steve, and Pete.

Among them they hold eight different jobs.

Each holds exactly two jobs.

The jobs are chef, guard, doctor, clerk, lawyer, teacher,
butler, and boxer.

The job of doctor is held by a male.

The husband of the chef is the clerk.

Roberta is not a boxer.

Pete has no education past sixth form.

Roberta, the chef, and the lawyer are different people but
went golfing together.

Question: Who holds which jobs?

First let us solve the problem as humans might. Make a table of the
possible people and the possible jobs they might hold, and fill in the
table with yes or no as we process the available information.

Jobs | Roberta | Thelma | Steve | Pete
chef X X X X
guard X X X X
doctor X X X X
clerk X X X X
lawyer X X X X
teacher X X X X
butler X X X X
boxer X X X X

27

We use x to show that we do not yet know whether to write yes or
no. To solve the problem, we need to have two yesses in each column
and one yes in each row. We proceed by trying to cross out (eliminate)
possibilities until only two remain for each person, and these can then
immediately be filled in with ‘yes’.

A great deal of the information that a person might take into account
is implicit: that one is either male or female but not both, that Roberta
and Thelma are female while Steve and Pete are male, and that butlers
are male, but chefs, guards, doctors, clerks, lawyers, teachers and boxers
may be either male or female (although we have the explicit information
that in this case the doctor is male).

In solving the puzzle, it makes sense to concentrate on Roberta,
because more is known about her — she is not the boxer, she is also
not the chef or the lawyer, since she went golfing with them, nor is she
the doctor, nor the clerk (because the clerk is a husband), nor the butler.

Jobs | Roberta | Thelma | Steve | Pete
chef no X X X
guard X X X X
doctor no X X X
clerk no X X X
lawyer no X X X
teacher X X X X
butler no X X X
boxer no X X X

Since there are only two possibilities left, we know that Roberta is
the guard and teacher and can cross off guard and teacher in the other
columns because no job is held by more than one person. This leaves 6
jobs for 3 people, which is as it should be (a useful check).

Next we concentrate on Thelma, because she is female and so we
know more about her than the males — namely that Thelma cannot be
the doctor, butler, or clerk. Also, since the chef has a husband, the chef
must be female, and Thelma is the only female left. Since they went
golfing together, the chef is not the lawyer, so Thelma is not the lawyer.
She has to be the chef and the boxer.

28

Jobs | Roberta | Thelma | Steve | Pete
chef no yes no no
guard yes no no no
doctor no no X X
clerk no no X X
lawyer no no X X
teacher yes no no no
butler no no X X
boxer no yes no no

Now there are 4 jobs and 2 people left, which is as it should be.
To make further progress, we need some quite deeply hidden implicit
information, namely that the jobs of doctor, lawyer, and teacher require
more than 6th form education. Since Pete has education only up to
6th form, he cannot hold one of these three jobs. Of course, we already
know who the teacher is, but now we can deduce that Steve must be the
doctor and lawyer, leaving butler and clerk for Pete.

6.1 Solution by mimicking a human agent

Can we represent the puzzle by clauses in such a way that a reasoning
program will mimic our human solution? Let’s write down the obvious
bits of useful information.

1) Female(Roberta).

(

(2) Female(Thelma).

(3) Male(Steve).

(4) Male(Pete).

(5) Female(z) | Male(z).

(6) -Female(z) | -Male(z).

(7) -HasJob(Roberta, Boxer).

(8) -HasJob(z, Doctor) | Male(z).
(

9) -HasJob(z, Butler) | Male(z).

Next we introduce some Skolem functions, because we want to say
things like ‘for every person z, there exists a job that we might call
jobl(z) which is held by z’, and ‘for every job y, there exists a person
we might call jobholder(y) who holds that job’.

(10) HasJob(z, jobl(z)).

(11) HasJob(z, job2(z)).

(12) HasJob(jobholder(y), y).

Next we want to say ‘the husband of the chef is the clerk’. We can
use either a function symbol or a predicate symbol to express ‘husband
of’, but we choose to use a predicate symbol because we already need to
use a function symbol to talk about the person holding the job of chef.

29

(13) -Husband(z, jobholder(Chef)) | HasJob(z, Clerk).

(14) -HasJob(z, Clerk) | Husband(z, jobholder(Chef)).

Some implicit information related to husband:

(15) Female(jobholder(Chef)).

(16) -Husband(z, y) | Male(z).

(17) -Husband(z, y) | Female(y).

Next a clue about Pete:

(18) -GreaterThan(educ(Pete), 6).

Implicit information about education:

(19) -HasJob(z, Doctor) | GreaterThan(educ(z), 6).

(20) -HasJob(z, Lawyer) | GreaterThan(educ(z), 6).

(21) -HasJob(x, Teacher) | GreaterThan(educ(z), 6).

Next we have the clue telling us that Roberta is not the chef or the
lawyer, and also, less obviously, that no-one can be both the chef and
the lawyer, because three different people went golfing.

(22) -HasJob(Roberta, Chef).

(23) -HasJob(Roberta, Lawyer).

(24) -HasJob(z, Chef) | -HasJob(z, Lawyer).

Because our variables are not mnemonic strings reminding us what
they stand for, keep in mind that HasJob takes a person as first argument
and a job as second argument.

Next we say that the four names refer to distinct people:

25) -EqualP(Roberta, Thelma).
6) -EqualP(Roberta,Steve).

7) -EqualP(Roberta,Pete).

8) -EqualP(Thelma, Steve).
9) -EqualP(Thelma, Pete).

0) -EqualP(Pete, Steve).

We use EqualP since equality of people is our concern, not equality
in general. (In effect, we are using sorts, but without being very formal
about it.)

Next we say that the two jobs a person holds are distinct, using an
equality predicate EqualJ whose arguments have sort jobs.

(31) -EqualJ(jobl(z), job2(z)).

We may want to use yet another equality predicate later, when we
talk about whether possibilities have been crossed off the table. For
each of the equality predicates, we need to say that it is reflexive. (Other
properties such as symmetry and transitivity are usually taken care of by
the inference rules and techniques of demodulation or paramodulation.)

(32) EqualP(z, z).

(33) Equall(z,).

(34) Equal(z, z).

30

Next we say that a person holds only two jobs and that that different
people do not hold the same job.

(35) -HasJob(z, y) | Equall(y, job2(z)) | Equall(y, jobl(z)).

(36) EqualP(z, z) | -HasJob(z, y) | -HasJob(z, y).

To allow the program to take into account information like ‘a partic-
ular job is held by a female different from Roberta’ we add the clauses:

(37) -Female(jobholder(y)) | HasJob(Roberta, y)

| HasJob(Thelma, y).

(38) -Male(jobholder(y)) | HasJob(Steve, y) | HasJob(Pete, y).

How can we enable the program to simulate our use of a table to
solve the problem?

We need some clauses to simulate the table (the labels and the values
at the row-column intersections) plus clauses that allow the program to,
in effect, cross off possibilities and fill in yes or no.

We begin with four clauses describing that the table has four columns,
each corresponding to a person, with eight entries to be filled in con-
cerned with jobs. It is useful to ‘invent’ a list data-structure. We use
the function symbol ‘I’ for ‘list’, and 1 takes two arguments: a possible
job for someone and the remaining sublist. (We use ‘end’ for the empty
sublist.) The possible job for someone that gets put into the list is rep-
resented by a function symbol ‘pj’ which takes two arguments, namely
a person and a job.

(39) PossJobs(1(pj(Roberta, Chef), 1(pj(Roberta, Guard),

1(pj(Roberta, Doctor), 1(pj(Roberta, Clerk),
1(pj(Roberta, Lawyer), 1(pj(Roberta, Teacher),
1(pj(Roberta, Butler), 1(pj(Roberta, Boxer), end))))))))).
(40) PossJobs(1(pj(Thelma, Chef), 1(pj(Thelma, Guard),
1(pj(Thelma, Doctor), 1(pj(Thelma, Clerk),
1(pj(Thelma, Lawyer), 1(pj(Thelma, Teacher),
1(pj(Thelma, Butler), 1(pj(Thelma, Boxer), end))))))))).
(41) PossJobs(1(pj(Steve, Chef), 1(pj(Steve, Guard),
1(pj(Steve, Doctor), 1(pj(Steve, Clerk),
1(pj(Steve, Lawyer), 1(pj(Steve, Teacher),
1(pj(Steve, Butler), 1(pj(Steve, Boxer), end))))))))).
(42) PossJobs(1(pj(Pete, Chef), 1(pj(Pete, Guard),
1(pj(Pete, Doctor), 1(pj(Pete, Clerk),
1(pj(Pete, Lawyer), 1(pj(Pete, Teacher),
1(pj(Pete, Butler), 1(pj(Pete, Boxer), end)))))))))-

Next we have 8 clauses that hold the job fixed and vary the person
who might hold it, like the rows of the table.

(43) PossPer(1(pj(Roberta, Chef), 1(pj(Steve, Chef),

1(pj(Thelma, Chef), 1(pj(Pete, Chef), end))))).

31

(44) PossPer(1(pj(Roberta, Guard), 1(pj(Steve, Guard),

1(pj(Thelma, Guard), 1(pj(Pete, Guard), end))))).

(45) PossPer(1(pj(Roberta, Doctor, 1(pj(Steve, Doctor),

1(pj(Thelma, Doctor), 1(pj(Pete, Doctor), end))))).

(46) PossPer(1(pj(Roberta, Clerk), 1(pj(Steve, Clerk),

1(pj(Thelma, Clerk), 1(pj(Pete, Clerk), end))))).

(47) PossPer(1(pj(Roberta, Lawyer), 1(pj(Steve, Lawyer),

1(pj(Thelma, Lawyer), 1(pj(Pete, Lawyer), end))))).

(48) PossPer(1(pj(Roberta, Teacher), 1(pj(Steve, Teacher),

1(pj(Thelma, Teacher), 1(pj(Pete, Teacher), end))))).

(49) PossPer(1(pj(Roberta, Butler), 1(pj(Steve, Butler),

1(pj(Thelma, Butler), 1(pj(Pete, Butler), end))))).

(50) PossPer(1(pj(Roberta, Boxer), 1(pj(Steve, Boxer),

1(pj(Thelma, Boxer), 1(pj(Pete, Boxer), end))))).

Later we shall discuss alternative ways to represent information about
the possible jobs held by people that do not use a list data structure (i.e.
we examine alternatives to clauses 39 - 50). In general the reasoning
program is quite strongly influenced by the form in which we represent
knowledge.

Given that we are simulating the use of the table, we now need clauses
that describe the crossing off process.

First we need a clause that converts the information that a partic-
ular person does not hold a particular job into a clause that says ‘this
combination can be crossed off’. Our third equality predicate comes in
handy.

(51) HasJob(z, y) | Equal(pj(z, y), crossed).

The equality literal above will allow ‘crossed’ to be substituted for
the pj-entry in a list, and now we want a clause that shrinks the list by
removing the crossed off possibility from a list.

(52) Equal(l(crossed, z), z).

Remark 17 The mechanism for automatically applying an equality of
the form
Equal(pj(Roberta, Doctor), crossed)
1s called demodulation. We use demodulation to rewrite information
in a more desirable form. For example, we can cause a reasoning program
to automatically rewrite
AgeOf(father(father(Fred)), 90)
to
AgeOf(grandfather(Fred), 90)
if we add a demodulator like
Equal(father(father(x)), grandfather(z)).

32

Such rewriting occurs immediately after a specific demodulator is in-
ferred. That is, the job of Doctor will immediately be eliminated from
the various lists as soon as the program infers, from clause (51), the
demodulator

Equal(pj(Roberta, Doctor), crossed).

When a person’s two jobs have been determined, that person’s list
will contain exactly those two jobs. We want this to be used to cross
those two job possibilities off other people’s lists. Notice how we express
the idea ‘if x and w are not the same person’.

(53) -PossJobs(1(pj(z, y), I(pj(z, 2), end))) | EqualP(z, w)

| Equal(pj(w, y), crossed).

(54) -PossJobs(1(pj(z, y), l(pj(z, 2), end))) | EqualP(z, w)

| Equal(pj(w, z), crossed).

The program must be enabled to convert one way of expressing in-
formation to the other way of expressing it. If the list of possible jobs
for a person has been reduced to exactly two, then the program should
be able to use the HasJob predicate to say that the person has those
jobs.

(55) -PossJobs(1(pj(z, y), 1(pj(z, 2), end))) | HasJob(z, y).

(56) -PossJobs(1(pj(z, y), 1(pj(z, 2), end))) | HasJob(z, y).

We also need a clause that directly links a person to a job when the
other people who might hold the job have been eliminated.

(57) -PossPer(1(pj(x, y), end)) | HasJob(z, y).

Now let’s think about the goal and how to signal termination by
reaching a contradiction. We are going to arrange matters so that
the contradiction (or unit conflict) involves literals having the predi-
cate StillToDo. First we have a clause that describes the goal of finding
the jobs done by our four people.

(58) StillToDo(1(jobsof(Roberta), 1(jobsof(Steve),

1(jobsof(Thelma), 1(jobsof(Pete), end))))).

Just as with the clauses that list the possible jobs for a person, we
intend to remove each of the persons from this clause once that person’s
two jobs have been determined. Usually, when a person’s two jobs have
been determined, there will be a unit PossJobs clause with exactly two
jobs on the list that forms its argument. So we need a clause to convert
the PossJobs information into a new form that allows the person to be
removed from the StillToDo clause. Here is such a clause:

(59) -PossJobs(1(pj(x, v), 1(pj(z, z), end))) | Equal(jobsof(x),
crossed).

The idea is that demodulation puts ‘crossed’ in the StillToDo clause,
and then clause (52) shortens the StillToDo list. When the StillToDo

33

list is reduced to containing only ‘end’, the problem is solved and the
program should terminate. We ensure this by including the clause

(60) -Still'ToDo(end).

We have not quite finished representing the problem yet. It is con-
ceivable that the program might find the two jobs of each person, but in
terms of HasJob. Converting the HasJob information to PossJobs infor-
mation gives the opportunity to use demodulation again. The following
clause produces demodulators:

(61) —HasJob(a:, y) | Equal(pj(x, y)7 J(:L’, y))

The demodulator (equality literal) derived from clause (61) changes
information expressed in terms of function symbol ‘pj’ into information
expressed in terms of a function symbol ‘j’. Information is only expressed
in terms of j when a job has been paired with a person. This sort of
information should eventually occur in Possjobs clauses, and since we
want the program to know that jobs have been paired off with people,
we add some clauses that lead to such information being collected at the
left of the appropriate PossJobs clauses. First we give a demodulator
that forces the information expressed by j to the left:

(62) Equal(I(pj(z, y), 1(j(z, 2), w)), 1(i(z, 2), 1(pj(z, y), w))).

If and when the two jobs for a person are determined and expressed
in terms of function symbol ‘j’, they will appear as the leftmost two ele-
ments of a list in a PossJobs clause. We would then want the program to
be able to remove the remaining possible jobs (which would be expressed
by use of function symbol ‘pj’).

(63) Equal(1(j(z, y), 1(j(z, 2), (v, w))), 1(i(=, y), 1(i(=, 2), end))).

To enable the program to cross the person off the StillToDo list of
tasks:

(64) -PossJobs(1(j(z, v), 1(j(z, z), end))) | Equal(jobsof(z), crossed).

It is possible for the program to discover a person’s jobs either directly
in terms of HasJob or by eliminating jobs. If for example one of a
person’s jobs is discovered directly and the other by elimination, the
information will be in PossJobs but partly in terms of function j and
partly in the fact that the possible jobs list has been reduced to two
elements. To cope with this:

(65) -PossJobs(1(j(z, v), l(pj(z, 2), end))) | HasJob(z, 2).

To see how clause (65) does what it is supposed to, recall that
HasJobs triggers the demodulator-producing clause (51).

Exercise 18 On demodulation

1. In the last section, the concept of demodulation was introduced.

34

(a) Give the demodulator (i.e. the unit equality clause) that could
be used to rewrite

Equal(a, sum(4, sum(10, minus(10)))).

as the clause
FEqual(a, sum(4, 0)).

Give the demodulator that would allow this to be rewritten as
Equal(a, 4).

(b) Suppose you represent a list of people by a term such as

[(Bob, l(Mary, I(Jim, end)))

and that you want such a term to be rewritten, if the list

contains Mary, as ‘notacceptable’. For instance,

Represents(Edison, [(Bob, [(Mary, l(Jim, end))).
should be rewritten as
Represents(Edison, notacceptable).

Give the demodulators that could be used to make the rewriting
occur.

2. Demodulation is often used to simplify a newly generated clause.
What unit clauses will be generated from

Equal(sum(a, sum(times(2, b), 4)), 0).
Equal(sum(minus(a), sum(b, minus(4))), 0).
-Equal(sum(z1, sum(yl, z1)), 0)
| -Equal(sum(z2, sum(y2, 22)), 0)
| Equal(sum(sum(x1,x22), sum(sum(y1,y2), sum(z1,22))),0).
assuming that we use the demodulators
Equal(sum(z, 0),).
Equal(sum(0, z), x).
Equal(sum(z, minus(x)), 0).
Equal(sum(minus(z), x), 0).

6.2 OTTER’s processing of the data

Before showing you the input file you could use to get OTTER to solve
the larger jobs puzzle, let us think about the way OTTER’s proof would
unfold. This is influenced by the initial grouping of clauses into the
usable list and the set of support.

In the set of support, we would place the clauses that represent spe-
cial hypotheses as well as the clause

35

-StillToDo(end).

that represents the denial of our goal. The special hypotheses would
be clauses like (7), which tell us specific things about particular people —
Roberta is not the boxer, Pete has no education beyond form 6, Roberta
is female, that sort of thing.

Let’s say the set of support contains clauses (1), (2), (3), (4), (7),
(18), (22), (23), (60).

Now the program might derive, from clauses (7) and (51):

(66) Equal(pj(Roberta, boxer), crossed).

This says that the program can begin to cross off the possibility
of Roberta being the boxer — ‘begin’, because this equality has to be
used as a demodulator to rewrite the list of Roberta’s jobs. First the
possibility of Roberta being a boxer is replaced by ‘crossed’ in her list.
From clauses (66) and (39):

(67a) PossJobs(1(pj(Roberta, Chef), 1(pj(Roberta, Guard),
1(pj(Roberta, Doctor), 1(pj(Roberta, Clerk),
1(pj(Roberta, Lawyer), 1(pj(Roberta, Teacher),
1(pj(Roberta, Butler), 1(crossed, end))))))))).

But this clause is not actually kept because it is immediately demod-

ulated by another equality. From (52) and (67a):

(67) PossJobs(1(pj(Roberta, Chef), 1(pj(Roberta, Guard),
1(pj(Roberta, Doctor), 1(pj(Roberta, Clerk),
1(pj(Roberta, Lawyer), 1(pj(Roberta, Teacher),
1(pj(Roberta, Butler), end)))))))).

Clause (67) is an updated list of possible jobs for Roberta. The job
of boxer has now been completely crossed off, to the extent that even
the expression ‘crossed’ has been removed. Clause (39) is discarded,
because demodulation always replaces the original version of a clause by
the demodulated version..

Similarly the job of chef is crossed off in two steps:

From clauses (22) and (51):

(68) Equal(pj(Roberta, Chef), crossed).

From (67) and (68):

(69) PossJobs(1(1(pj(Roberta, Guard),
1(pj(Roberta, Doctor), 1(pj(Roberta, Clerk),
1(pj(Roberta, Lawyer), 1(pj(Roberta, Teacher),
1(pj(Roberta, Butler), end)))))))).

Clause (69) is obtained from clause (67) by applying the demodula~
tors (68) and (52), that is, by rewriting (67) with the aid of the equali-
ties (68) and (52). As was the case in producing clause (67), the initial
rewrite with clause (68) produces an intermediate clause (69a) which is
not actually kept:

36

(69a) PossJobs(1(crossed, 1(pj(Roberta, Guard),

1(pj(Roberta, Doctor), 1(pj(Roberta, Clerk),

1(pj(Roberta, Lawyer), 1(pj(Roberta, Teacher),

1(pj(Roberta, Butler), end))))))).

Clause (69a) is immediately rewritten using clause (52) to yield clause
(69), the clause that is actually kept. Clause (69) is a further updating
of Roberta’s possible jobs. Continuing;:

From clauses (23) and (51):

(70) Equal([j(Roberta, Lawyer), crossed).

From (69) and (70) we get clause (71), which updates clause (69):

(71) PossJobs(1(1(pj(Roberta, Guard),

1(pj(Roberta, Doctor), 1(pj(Roberta, Clerk),
1(pj(Roberta, Teacher),
1(pj(Roberta, Butler), end)))))).

Is it clear how demodulation removes jobs from Roberta’s list?

At this point in the program’s attack on the jobs puzzle, the possi-
bilities for all four people are as shown in the following table, where an
x indicates that the corresponding possibility is still in doubt.

Jobs | Roberta | Thelma | Steve | Pete
chef no X X X
guard X X X X
doctor X X X X
clerk X X X X
lawyer no X X X
teacher X X X X
butler X X X X
boxer no X X X

So far the program has been finding positive clauses, clauses which
assert that something is the case. Now it finds negative clauses, clauses
which assert that something is not the case.

From clauses (1) and (6):

(72) -Male(Roberta).

From (72) and (8):

(73) -HasJob(Roberta, Doctor).

From (72) and (9):

(74) -HasJob(Roberta, Butler).

Clause (72) may not seem profound but it has further uses.

From (72) and (16):

(75) -Husband(Roberta, y).

Roberta is nobody’s husband. In particular, clause (75) is true for
the value of y that is jobholder(Chef).

37

From (75) and (14):

(76) -HasJob(Roberta, Clerk).

Clauses (73), (74), and (76) are used to remove jobs from Roberta’s
list in the manner that should by now be familiar. Suppose the equalities
derived from (51) are clauses (77), (78), and (79). (Write them out as
an exercise.) The updated version of Roberta’s list finally contains just
two jobs:

(80) PossJobs(1(1(pj(Roberta, Guard),

1(pj(Roberta, Teacher), end))).

Since the program has now discovered which two jobs Roberta holds,
it should infer information about which jobs are not held by Thelma,
Steve, and Pete. This is done by using clauses (53), (54), (25), (26),
(27) and (80).

For example, from (80), (53), and (25):

(81) Equal(pj(Thelma, Guard), crossed).

Clauses like (81) are demodulators which may be used together with
(52) to update the remaining jobs lists. Six of these demodulators are
obtained, and their effects are shown in the following table, which still
has 18 undecided combinations in it because there are three people whose
jobs are still to be determined and six possible jobs for each.

Jobs | Roberta | Thelma | Steve | Pete
chef no X X X
guard yes no no no
doctor no X X X
clerk no X X X
lawyer no X X X
teacher yes no no no
butler no X X X
boxer no X X X

We shall not go through the rest of the processing in detail. But it is
worth mentioning one matter. From clauses (80) and (59) the program
produces the demodulator

(82) Equal(jobs(Roberta), crossed).

This is used together with (58) and then (52) to give:

(83) StillToDo(1(jobsof(Steve),

1(jobsof(Thelma), 1(jobsof(Pete), end)))).
So (83) updates (58). Eventually, these updates lead to the clause
StillToDo(end).

This is in unit conflict with (i.e. contradicts) clause (60). At that

point, clauses will exist that contain the required information. Specifi-

38

cally, the four clauses that list the possible jobs for the four people will
each contain exactly two possibilities.

6.3 Input file for OTTER

OTTER is not interactive — you tell it everything you think it needs to
know in an input file, and then it returns an output file. You need to
tell OTTER not only what your usable list and set of support are, but
how you want it to attack the problem.

Let’s begin with the commands by which you instruct OTTER how
to attack the problem. The order in which you place the (set or clear
or assign) commands is irrelevant, as is the order in which you place the
various lists. Nevertheless it makes sense to decide on an order and stick
to it. All commands must end with a period, just like clauses. What
commands might we include?

First we instruct OTTER on the kind of resolution to use. The
analysis given above did not specify the kind of resolution to be used, but
UR-resolution will do. So we begin the input file with a ‘set’ command
that specifies ur _res. (Have a look at the input file that is given over
the page.)

We used demodulation quite heavily, and to allow the program to
create new demodulators and then use them, we have two ‘set’ commands
near the beginning of the input file. (Have a look at the input file given
on the next page.)

In our analysis, we began with Roberta, This seems natural, because
we know more about Roberta than about the others. To ensure that
the program does the same, we would assign weights — the lighter the
weight, the sooner the program looks at the clause. So to make the
program concentrate on Roberta, we would set the weight of Roberta to
be smaller than the weight of any other person or job or concept. In the
input file below, you will see that we use a list called pick and purge
to give Roberta the lowest weight, then Thelma, then Steve, and then
Pete. (We could, if we wanted, use the assign(max_weight,k) command
to place a ceiling on the weight of every retained clause — symbols that
have not been allocated a weight get a default weight of 1, and so the
ceiling has the effect of purging long clauses.)

One of the nice things about OTTER is that you can use it to find sev-
eral proofs, or to look for shorter proofs, and so on. We’re not interested
in that, and so we tell the program by means of an assign(max_proofs,k)
command to stop after finding its first proof.

We could use clear(print__kept) to save space in the output file, sup-
pressing the inclusion in the file of each clause as it is retained. The
assign(report,k) command tells OTTER to place, every k CPU seconds,

39

a report in the output file that gives many statistics showing how the
program is spending its CPU time. You could use set(input_sos_first)
if you want OTTER to choose as focus of attention clauses in the order
in which they are listed in the input set of support, before it chooses
from clauses it has inferred. Note that if you do not use this option,
then clauses are always chosen by weight.

The various commands are normally followed by lists of clauses.
The basic structure of the input file involves two lists — the usable list,
in which a general description of the problem is given, and list(sos),
which can be thought of as the information that the program regards as
most relevant, so that the clauses in list(sos) are waiting for the attention
of the program to focus on them. Clauses are moved from list(sos) to
the usable list as the program focuses its attention on them. Sometimes
we want to adopt a refinement of the list(sos) strategy, in which we
take some clauses out of the set of support and put them in a separate
list called the passive list. The idea is that the passive list contains
those clauses of the set of support that should not participate in the
inferences but should only be consulted to see whether unit conflict has
been achieved or for forward subsumption. And finally, if we want to
use demodulation, we add a list of initial demodulators.

Here is an illustrative input file that could be used with OTTER to
solve the larger jobs puzzle:

set(ur_res).

set(back _demod).

set(dynamic__demod _all).

assign(max_ proofs,1).

%Now we allocate the weights:

weight list(pick and purge).

weight(Roberta,1).

weight(Thelma,2).

weight(Steve,3).

weight (Pete,4).

end of list.

%Next we describe the problem.

list(usable).

Female(z) | Male(z).

-Female(z) | -Male(z).

-HasJob(z, Doctor) | Male(z).

-HasJob(z, Butler) | Male(z).

HasJob(z, jobl(z)).

HasJob(z, job2(z)).

HasJob(jobholder(y), y).

40

-Husband(z, jobholder(Chef)) | HasJob(z, Clerk).
-HasJob(z, Clerk) | Husband(z, jobholder(Chef)).
Female(jobholder(Chef)).
-Husband(z, y) | Male(x).
-Husband(z, y) | Female(y).
-HasJob(z, Doctor) | GreaterThan(educ(z), 6).
-HasJob(z, Lawyer) | GreaterThan(educ(z), 6).
-HasJob(z, Teacher) | GreaterThan(educ(z), 6).
-HasJob(z, Chef) | -HasJob(z, Lawyer).
-EqualP(Roberta, Thelma).
-EqualP(Roberta,Steve).
-EqualP(Roberta,Pete).
-EqualP(Thelma, Steve).
-EqualP(Thelma, Pete).
-EqualP(Pete, Steve).
-EqualJ(jobl(z), job2(z)).
EqualP(z, z).
EqualJ(z, z).
Equal(z, z).
-HasJob(z, y) | EqualJ(y, job2(z)) | EqualJ(y, jobl(z)).
EqualP(z, z) | -HasJob(z, y) | -HasJob(z, y).
-Female(jobholder(y)) | HasJob(Roberta, y) | HasJob(Thelma, y).
-Male(jobholder(y)) | HasJob(Steve, y) | HasJob(Pete, y).
PossJobs(1(pj(Roberta, Chef), 1(pj(Roberta, Guard),

1(pj(Roberta, Doctor), 1(pj(Roberta, Clerk),

1(pj(Roberta, Lawyer), 1(pj(Roberta, Teacher),

1(pj(Roberta, Butler), 1(pj(Roberta, Boxer), end))))))))).
PossJobs(1(pj(Thelma, Chef), 1(pj(Thelma, Guard),

1(pj(Thelma, Doctor), 1(pj(Thelma, Clerk),

1(pj(Thelma, Lawyer), 1(pj(Thelma, Teacher),

1(pj(Thelma, Butler), 1(pj(Thelma, Boxer), end))))))))).
PossJobs(1(pj(Steve, Chef), 1(pj(Steve, Guard),

1(pj(Steve, Doctor), 1(pj(Steve, Clerk),

1(pj(Steve, Lawyer), 1(pj(Steve, Teacher),

1(pj(Steve, Butler), 1(pj(Steve, Boxer), end))))))))).
PossJobs(1(pj(Pete, Chef), 1(pj(Pete, Guard),

1(pj(Pete, Doctor), 1(pj(Pete, Clerk),

1(pj(Pete, Lawyer), 1(pj(Pete, Teacher),

1(pj(Pete, Butler), 1(pj(Pete, Boxer), end))))))))).
PossPer(1(pj(Roberta, Chef), 1(pj(Steve, Chef),

1(pj(Thelma, Chef), 1(pj(Pete, Chef), end))))).
PossPer(1(pj(Roberta, Guard), 1(pj(Steve, Guard),

41

1(pj(Thelma, Guard), 1(pj(Pete, Guard), end))))).
PossPer(1(pj(Roberta, Doctor, 1(pj(Steve, Doctor),
1(pj(Thelma, Doctor), 1(pj(Pete, Doctor), end))))).
PossPer(1(pj(Roberta, Clerk), 1(pj(Steve, Clerk),
1(pj(Thelma, Clerk), 1(pj(Pete, Clerk), end))))).
PossPer(1(pj(Roberta, Lawyer), 1(pj(Steve, Lawyer),
1(pj(Thelma, Lawyer), 1(pj(Pete, Lawyer), end))))).
PossPer(1(pj(Roberta, Teacher), 1(pj(Steve, Teacher),
1(pj(Thelma, Teacher), 1(pj(Pete, Teacher), end))))).
PossPer(1(pj(Roberta, Butler), 1(pj(Steve, Butler),
1(pj(Thelma, Butler), 1(pj(Pete, Butler), end))))).
PossPer(1(pj(Roberta, Boxer), 1(pj(Steve, Boxer),
1(pj(Thelma, Boxer), 1(pj(Pete, Boxer), end))))).
HasJob(z, y) | Equal(pj(z, y), crossed).
Equal(I(crossed,), x).
-PossJobs(1(pj(z, y), 1(pj(z, 2), end))) | EqualP(z, w)
| Equal(pj(w, y), crossed).
-PossJobs(1(pj(z, v), l(pj(z, z), end))) | EqualP(z, w)
| Equal(pj(w, z), crossed).
-PossJobs(1(pj(z, y), 1(pj(z, 2), end))) | HasJob(z, y).
-PossJobs(1(pj(z, y), I(pj(z, 2), end))) | HasJob(z, 2).
-PossPer(1(pj(z, y), end)) | HasJob(z, y).
StillToDo(1(jobsof(Roberta), 1(jobsof(Steve) ,
1(jobsof(Thelma), 1(jobsof(Pete), end))))).
-PossJobs(1(pj(z, y), 1(pj(z, z), end))) | Equal(jobsof(z), crossed).
-HasJob(x, y) | Equal(pj(x, ?/); J(QZ, y))
Equal(l(pj(z; y), 1(j(z, 2), w)), 1(j(z, 2), I(pj(z; y), w))).
Equal(1(j(=, y), 1(i(z, 2), (v, w))), 1(i(z y), 1(i(z 2), end))).
-PossJobs(1(j(z, y), 1(j(x, 2), end))) | Equal(jobsof(z), crossed).
-PossJobs(1(j(z, y), l(pJ(x z), end))) | HasJob(z, z).
end of list.
%Now the set of support.
list(sos).
Female(Roberta).
Female(Thelma).
Male(Steve).
Male(Pete).
-HasJob(Roberta, Boxer).
-GreaterThan(educ(Pete), 6).
-HasJob(Roberta, Chef).
-HasJob(Roberta, Lawyer).
-StillToDo(end).

42

end of list.

%We have no passive list.

%Finally the list of input demodulators.
list(demodulators).
Equal(I(crossed,x),x).

end of list.

6.4 Alternative representation of the jobs puzzle

There is no simple algorithm for representing problems. But in general
you will need to trade-off against each other two opposing desires —
the desire to just write down the clauses that come naturally, and the
desire to write down only a few clauses. The representation we used
for the larger jobs puzzle was not the obvious natural one, but as we
shall see it involved substantially fewer clauses than the obvious set of
clauses would. Our representation was designed to allow the program to
‘cross off” possibilities from a list. The method involved a trick, namely
using equality in an unusual way (demodulation). We now look at an
approach which avoids demodulation and the associated equalities.

To see how to avoid the tricks and obtain a straightforward represen-
tation, let’s look closely at what the larger jobs puzzle says. There are 2
key facts. Firstly, it says that there are 8 jobs and each person holds 2
of them. An immediate consequence is that once we know 6 specific jobs
that a person does not hold, then we know the 2 jobs that the person
does hold. The second key fact is that each job is supposed to be held
by one person. Thus we know that a particular person holds a job once
we have proved that the other three people do not hold the job. This
second piece of information is easy to represent:

(1) HasJob(Roberta, Doctor) | HasJob(Thelma, Doctor)

| HasJob(Steve, Doctor) | HasJob(Pete, Doctor).

This clause says that one of four people holds the job of Doctor.
If the program can infer from its other information the following three
clauses,

(2) -HasJob(Roberta, Doctor).

(3) -HasJob(Thelma, Doctor).

(4) -HasJob(Pete, Doctor).

then the program can remove them by UR-resolution from the pos-
sible jobholders of doctor to get

(5) HasJob(Steve, Doctor).

To take this approach to representation, notice that you must supply
seven other clauses like clause (1) to the program. Each of these clauses
holds the job fixed and varies the people. However, it is possible, and
preferable, to make use of generality. Instead of eight clauses like clause

43

(1), we can supply a single clause:
(6) HasJob(Roberta, y) | HasJob(Thelma, y)
HasJob(Steve, y) | HasJob(Pete, y).

Clause (6) says that for any of the eight jobs in the puzzle, the job is
held by one of the four people. Is it clear that clause (6) subsumes clause
(1) and each of the other seven variants of (1) that would be needed for
the remaining seven jobs?

From clause (6) and clauses (2), (3), (4) we again get clause (5) by
UR-resolution, the variable y being instantiated by Doctor.

Now that we have seen how to use clause (6) to represent the second
piece of information in the puzzle, let us return to the first piece, namely
that the elimination of 6 jobs for a person implies that the person holds
the other 2 jobs. Temporarily call the jobs jobl, job2, ..., job8, just to
make them easier to keep track of. Now we need clauses to say: ‘if a
person does NOT have jobl and does NOT have job2 and ... does NOT
have job6, then the person has job7 and job8’. To do this we can use
the following two pattern clauses:

(7) HasJob(z, jobl) | HasJob(z, job2) | HasJob(z, job3)

| HasJob(z, job4) | HasJob(z, jobb)
| HasJob(z, job6) | HasJob(z, job7).

(8) HasJob(z, jobl) | HasJob(z, job2) | HasJob(z, job3)

| HasJob(z, job4) | HasJob(z, job5)
| HasJob(z, job6) | HasJob(z, job8).

These clauses have only positive literals because ——p = p. Now to
get the actual clauses of our representation from the pattern clauses,
replace each of jobl, job2, ..., job8 by the actual jobs in the puzzle,
namely Doctor, Teacher, and so on. This has to be repeated for every
subset of six jobs from the set of eight. There are (g) = 28 such subsets,
and so we must produce 56 clauses from the pattern clauses.

Actually, we don’t need all 56 clauses. If you inspect them, you find
that there are only eight distinct clauses, each appearing seven times
with the literals in a different order. We don’t care about the order and
so we (or subsumption, if we leave it to OTTER) will discard all but
eight of the 56 clauses. Intuitively this makes sense — each of the eight
clauses is obtained by omitting one of the eight jobs.

What the above discussion shows is that the ‘crossing-oft’ trick that
relies on a list function and on demodulation can be replaced by a
straightforward representation. We still have to figure out how to build
in a termination condition so that the program knows when to stop.
And of course we will have to make changes in the other clauses needed
for our representation, so that they match our new approach.

Since the aim of the puzzle is to find out which two jobs are held by

44

each of the four people, we can use the predicate symbol TwoJobs to
design a clause that says ‘if for any eight jobs x1 to x8 you know that
Roberta has two and Thelma has two and Steve has two and Pete has
two, then the puzzle is solved’:

(9) -TwoJobs(Roberta, x1, x2) | -TwoJobs(Thelma, x3, x4)

| -TwoJobs(Steve, x5, x6) | -TwoJobs(Pete, x7, x8)
| Solved(puzzle).

Since the predicate in this clause is TwoJobs, we need a clause to
connect the information in HasJob with information in TwoJobs. For
example, if we know that Roberta HasJob as Teacher and HasJob as
Guard, then we must have a clause to convert this to TwoJobs(Roberta,
Teacher, Guard). We must be careful that the conversion takes place
only after two distinct jobs have been found. Here is a single clause that
covers all four people:

(10) -HasJob(z, y) | -HasJob(z, z) | EqualJ(y, 2)

| TwoJobs(z, y, z).

Can you see why the literal EqualJ(y, z) has no negation in front of
it?

It was important to put the equality literal into (10) so that the
program is protected from mistakenly concluding that a person’s two
jobs are known when only one is known. But now we need clauses that
specifically state that the various jobs are different from each other, two
at a time:

(11) -EqualJ(Doctor, Teacher).

(12) -EqualJ(Chef, Doctor).

And so on — there are lots of similar clauses needed, in fact 56 of
them, since there are 8 possibilities for the first job mentioned and 7
possibilities for the second job. If we take advantage of the fact that
equality is symmetric, we can reduce the number of clause from 56 to
(2) = 28. To build in the symmetry of equality for EquallJ, we would
need a clause saying that if EqualJ(z, y) then Equall(y, z).

A final point about the straightforward representation, before we try
to sum up. When the program has deduced the unit clause

Solved(puzzle).

then it should find a unit conflict signalling a contradiction, so we
must be sure to place in the set of support the clause

(13) -Solved (puzzle).

How do we know who holds which job? Well, there are ways to be
clever in devising a goal clause that keeps track of the answers, and we
shall illustrate the use of such an ‘Answer literal’ in due course. But for
now, it would be easy enough to inspect the output of the program and
look for the unit clauses that involve the predicate symbol TwoJobs.

45

How should we choose between the two approaches, namely the list
+ demodulation approach and the straightforward approach?

The most obvious difference between the two approaches is that num-
ber of clauses required increases dramatically if we adopt the straight-
forward representation. For more complex problems, this increase may
be prohibitive. For example, to express the fact that the 8 jobs were
pairwise distinct we needed 56 clauses, or 28 if symmetry of equality
was built in. If there were 20 jobs, then 20 x 19 = 380 clauses would
be needed, or 190 if symmetry of equality were built in. And remember,
you have to type in the clauses yourself, by hand, bedewing the keyboard
with the perspiration of your brow. Against this must be balanced the
fact that the straightforward approach is easier and less prone to errors
of formulation and easier to modify.

Larry Wos recommends using the more complex approach that in-
volves demodulation because some tasks are best done as asides, auto-
matically, so that they do not interrupt the main search for important
information. When you work with pen and paper on something like the
larger jobs puzzle, you update your information by placing appropriate
marks in the various squares of a table to indicate who has which job
and who cannot have which job. Such updating is usually done auto-
matically, without deep thought. A reasoning program can do the same
thing if you choose an appropriate representation of the problem. By
taking advantage of demodulation, we can make the crossing-off tasks,
which might be regarded as ‘housekeeping’ operations, happen without
interfering with the rest of the reasoning process. The program auto-
matically keeps a current record of information, and it is less distracted
from the real problem of finding new facts.

Insight is required to replace the straightforward approach with the
appropriate demodulators, but a sharp increase in efficiency results be-
cause the updating does not have to wait its turn to be carried out by the
inference mechanism. A reasoning program chooses, according to some
strategy, each new fact on which to focus. With the straightforward
approach, each updating fact must take its turn for consideration by the
inference rule. With the tricky approach, demodulation automatically
uses the new information to update at the end of each inference.

7 Paramodulation

Let’s find something useful that demodulation cannot do.

First, here is an example in which demodulation is applied to two
clauses to produce a third clause, so that demodulation is being used
more like an inference rule than something doing housekeeping in the
background:

46

Equal(husband(sister(Ted)), Bob).
Equal(sister(Ted), Mary).
Equal(husband(Mary), Bob).
Here we have used the second clause as authority for substituting
Mary for sister(Ted) in the first clause, and can regard the conclusion as
an update of the first clause. (By the way, usually we would not be able
to represent ‘sister of’ by a function symbol, because the same person
may have many sisters. But we do it here just for convenience of the
example.)
Now consider the following contrasting example.
A person’s father is older than the person:
OlderThan(father(z),).

Suppose Jack’s father is Ralph:
EqualP(father(Jack), Ralph).

Now we would like to conclude that Ralph is older than Jack:
OlderThan(Ralph, Jack).
But notice that demodulation does not bring us this far. Demodu-
lation would allow us to replace any instance of the term father(Jack)
by an instance of Ralph, and in this sense demodulation behaves like a
strengthening of unification so that we can substitute a term for another
term that need not be a variable. But demodulation cannot first replace
the variable x in the term father(z) — as well as all other occurrence of
x in the clause — by the term Jack before then going on to substitute
Ralph for father(Jack).
Paramodulation can do this. Let’s carefully spell out the difference.
Demodulation requires that the variable replacement paving the way
for the substitution take place only in the demodulator and not in the
expression for which substitution is intended. For instance, in the larger
jobs puzzle we used the demodulator
(52) Equal(l(crossed, z), z).
to shorten the lists by for example binding z to ‘end’ in clause (67a)
to produce (67).
Paramodulation, on the other hand, allows the variable replacement
in either (or both) the equality literal and/or the expression to which we
want to apply the equality. This extra freedom allows paramodulation
to draw surprisingly strong conclusions in one step.
For example, from the clauses
Equal(sum(0,), x).
Equal(sum(y, minus(y)), 0).

paramodulating from the first into the second yields
Equal(minus(0), 0).

Another example: by applying paramodulation from

47

Equal(sum(z, minus(x)), 0).
to

Equal(sum(y, sum(minus(y), z), 2).
we get the result

Equal(sum(y, 0), minus(minus(y))).

Do you see how we get the clause saying y + 0 = —(—y) from the
previous two? A variable replacement is made that causes sum(z, mi-
nus(z)) in the first clause to become identical with sum(minus(y), z) in
the second. This involves substituting minus(y) for z in the first clause
and minus(minus(y)) for z in the second. Now the first clause justifies
us replacing the term sum(minus(y), z) in the second. Of course, this
term has already become something different by the variable replace-
ment, namely sum(minus(y), minus(minus(y))), but in any case this is
now replaced by 0. Thus the conclusion has, as the first argument of the
Equality predicate, the simple sum(y, 0). The second argument is the
term by which z was replaced.

Our examples have involved unit clauses only. But this is mere co-
incidence. Here is an example showing how paramodulation may be
applied from a clause with more than one literal to a clause with more
than one literal. Let us use ‘father’ as a function symbol taking two
arguments, so that we can talk about the father of two siblings.

If Al is someone’s sibling, then the father of Al and that person has
Al’s surname:

(1) -Sib(Al, y) | Equal(surname(father(Al, y), surname(Al)).

If someone is Bob’s sibling, then the father of that person and Bob
has Bob’s surname:

(2) -Sib(z, Bob) | Equal(surname(father(x, Bob), surname(Bob)).

Now paramodulating from clause (1) into clause (2), and collapsing
identical literals, we get:

(3) -Sib(Al, Bob) | Equal(surname(Al), surname(Bob)).

Note that a variable replacement was needed in both the from and
the into clauses.

Paramodulation can substitute a term into an expression no matter
how deeply it occurs inside a literal. However, unlike demodulation,
paramodulation is not automatically applied to every expression the way
demodulation is, because demodulation is used to simplify expressions,
whereas paramodulation need not. This is also why paramodulation does
not discard the original clause into which the substitution was made,
whereas demodulation retains only the final form of the information.

We shall not examine the use of paramodulation in any greater detail
here.

Exercise 19 On paramodulation

48

1. Consider the following two clauses:

(1) Equal(f(xy), f(y,x)).
(2) Equal(f(f(z,y), 2), f(x, f(y,2)).

To paramodulate from (1) into (2), you first rename the variables
in one of the clauses so that the two clauses do not share a variable.
Then you unify one of the arguments of clause(1) with a term in
(2). Then you replace the term in clause (2) by the other argu-
ment of clause (1), and instantiate the result with the substitution
obtained from the unification.

For example, first we can rename variables to change clause (1)
mnto

(17) Equal(f(zl,yl), f(yl,x1)).
Now we can unify f(x1,y1) from clause (1°) with f(z,y) in clause (2)
by replacing x1 with x and y1 with y. Next we form the paramod-
ulant by replacing f(x,y) with f(yl,x1) — the other argument of

(1°) — and instantiating the result (in other words carrying out
the replacement of variables required by unification) to get

(3) Equa(f(f(y,x), 2), f(x, f(y.2)).

There is only a single change to clause (2), namely the term f(z,y)
has been replaced by the term f(y,z) to give clause (3).

Similarly, we can paramodulate from f(y1,z1) in clause (1°) into
the second occurrence of y in (2) to get

(4) Equal(f(f(x, f(y1,21)), 2), f(x, f(f(x1,y1), 2))).

Here we have changed clause (2) in two places. We have unified
f(yl,x1) in clause (1) with y in clause (2), and this accounts for the
first change. Then we have taken the other argument from clause
(1), and substituted it for the second occurrence of y in (2). This
is the paramodulation part of the process.

Now here is the exercise: Give all of the clauses that can be ob-
tained by paramodulating from clause (1) into clause (2).

8 The answer literal

In the set of support (and the passive list, if you have one) some of the
clauses may be augmented by an answer literal which keeps track of the
construction of an object. For example, you could use an answer literal
to keep track of which person gets which two jobs in the jobs puzzle.
The following example illustrates the use of an answer literal.

49

We are going to look at a small problem from the A-calculus (but
if you’re not doing COSC459, don’t worry — we won’t assume a lot of
background knowledge). Here is the idea.

In functional programming, there are things called lambda-terms
that may be used to represent functions. Some of these lambda-terms
are important because they can be used as building blocks for others.
These important lambda-terms are called combinators.

An example of a combinator is I, which represents the identity func-
tion that simply returns whatever you give it, written Equal(a(I,x), x).
In other words, the application of T to an input x, namely a(I,x), is equal
to x.

Let’s use infix notation for equality in the rest of this section, and
we write |= to say ‘is not equal to’.

Here are clauses describing two very useful combinators:

(1) (a(a(a(Bx),y)z) = a(xa(y,z))).

(2) (aa(Tx)y) = a(yx)).

The combinator B takes three arguments in succession, namely x, y,
and z. B then spits out the composition you get by applying y to z,
and then applying x to the result. To make it even more concrete, think
of x being the function given by z(n) = n?, of y as being the function
given by y(n) = n+ 3, and let z = 1. Then what B spits out after being
applied to the input x, followed by vy, followed by z, is (1 + 3)% = 16.

The combinator T is even simpler. T applied to first x, then y, spits
out the result of applying y to x. So imagine that y is the function given
by y(n) = n+ 3, and let x = 5. Then T applied to x, with the result
applied to y, returns 5 + 3 = 8.

Here is our problem. Consider the question of whether there exists
a lambda-term, let’s call it G, which behaves like this:

For all x, y, z, and w, Gxyzw = xw(yz).

More precisely, and more cumbersomely, we want to know whether
there exists some G such that, for all x, y, z, and w:

(3) alaa(a(Gx).y)2)w) = ala(sw)a(yz)).

In fact, we want to know more than whether G exists. We want to
know whether G can be constructed from B and T, and how.

To solve our problem, we could put the definitions of B and T, namely
(1) and (2), into the usable list, and take the negation of the definition
of G, namely the negation of (3), as the denial of our goal, putting it in
list(sos), and then ask OTTER to tell us what it thinks.

What would the denial of our goal look like?

When we negate the definition of G, we change all the universal
quantifiers to existential quantifiers, and so we have to replace these by
Skolem functions. Also, although we have used the symbol G as name

50

for the term whose existence concerns us, bear in mind that we have
used G as a variable (existentially quantified), not as a constant. To
suit OTTER’s preference for variables being letters towards the end of
the alphabet, use a variable such as u instead of G. Now our whole plan
is to let OTTER try to construct the desired term by successive bindings
(i.e. instantiations, replacements of variables).

So the denial of our goal looks like this. We have the variable u
representing the desired lambda-term, in the place of the name G, and
we want to say — remember that we’re giving the denial of the goal now
— that for all values of u we can find values of x, y, z, and w for which
the equation does not hold.

Is it clear that this denies the existence of lambda-term G? The
relevant clause would use Skolem functions, say f(u) for x, g(u) for y,
h(u) for z, and i(u) for w. Thus we have as the denial of our goal:

(a(a(a(a(w,f(u)),g(w))h(u)),i(w)) = a(a(f(u),i(u)),(a(g(w),h(u)))).

We are much of the way towards a suitable input file for OTTER
now, but there is something still to achieve.

The negative equality in list(sos) contains just one variable, namely
u. As OTTER applies its reasoning in search of the desired lambda-
term, the variable u becomes more and more instantiated. If we could
observe the growing instantiation, we would see not only whether the
lambda-term G exists but how to build it from the building blocks we
give OTTER. This is an important idea — for example, if we were trying
to produce a hardware circuit or a piece of code we would be much more
pleased to have the object itself than just to have the information that
it exists.

To capture this growing instantiation, we add an ANSWER literal
(usually abbreviated $ans, perhaps with decoration to remind us what
we're looking for). We'll give the answer literal just the one variable u
and add it to the clause representing the denial of the goal. OTTER
knows never to use the answer literal for its inferences, but the
answer literal is inherited when its clause participates in an inference,
and its variable gets all the unifications (instantiations) that the infer-
ence demands. So the answer literal can be used in various ways —
to monitor progress, to observe partial construction, to diagnose what
might be preventing completion of the task, or (best of all) to present
the constructed object.

Adding an answer literal to the denial of our goal, we use $ans G as
a unary predicate symbol with u as the argument. This gives:

(4) (a(a(a(a(uf(u)),g(u)),h(u)),i(uw)) =

a(a(f(u),i(uw)), (a(g(u),h(u)))) [Sans_G(u).

We are now fairly close to an input file that would enable OTTER to

ol

solve our problem, although we should realise that our clauses heavily in-
volve equality and so we should in practice use demodulators and maybe
even paramodulation to help guide the inferences. We won’t examine
these aspects further, but you are invited to play with this example and
try to get the input file to work. Don’t worry if you can’t, though. The
purpose of this section was to illustrate the use of an answer literal to
monitor the construction of an object. The real challenge for you is the
following exercise.

Exercise 20 The problem below, known as Schubert’s Steamroller, is
named after Len Schubert and appeared in Pelletier FJ (1986): 75 Prob-
lems for testing automatic theorem provers, Journal of Automated Rea-
soning 2:191-216 (and see also errata in Pelletier (1988): Journal of
Automated Reasoning 4:235-236).

Use OTTER to solve the problem.

You will need to carefully express the relevant information in clausal
form, using list(usable) and list(sos), but if you wish you may use your
answer to the exercise in Lecture 14, taking care to write the wffs ac-
cording to OTTER’s conventions, and let OTTER transform your wffs
to clausal form. No other lists are needed.

You should set UR-resolution. No other commands are needed, al-
though you are welcome to experiment.

You should use an answer literal to record the predator and
the prey. Your answer literal may look like $ans_eats(z,y). Add it to
the denial of your goal.

No equalities are needed, and so demodulation does not arise.

Here is the puzzle.

Wolves, foxes, birds, caterpillars, and snails are animals, and there
exist some of each. Also there exist some grains, and grains are plants.
Every animal either likes to eat all plants or all animals much smaller
than itself that like to eat some plants. Caterpillars and snails are much
smaller than birds, which are much smaller than foxes, which are in turn
much smaller than wolves. Wolves do not like to eat foxes or grains,
while birds like to eat caterpillars but not snails. Caterpillars and snails
like to eat some plants. Prove that there exists an antmal that likes to
eat a grain-eating animal.

52

